Referências
ABADJI, J. et al. Towards a Cleaner Document-Oriented
Multilingual Crawled Corpus. Proceedings of the Thirteenth
Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.463>
ABNEY, S. P. Parsing By
Chunks. Em: BERWICK, R. C.; ABNEY, S. P.; TENNY, C. (Eds.).
Principle-Based Parsing: Computation and
Psycholinguistics. Dordrecht: Springer Netherlands, 1992. p.
257–278.
ABREU, S. C. DE; VIEIRA, R. Relp: Portuguese open relation extraction.
KO KNOWLEDGE ORGANIZATION, v. 44, n. 3, p. 163–177,
2017.
AFANTENOS, S.; ASHER, N. Counter-argumentation and discourse: A
case study. Proceedings of the Workshop on Frontiers and
Connections between Argumentation Theory and Natural Language
Processing. Anais...CEUR Workshop Proceedings, 2014.
AFONSO, S. et al. Floresta Sintá(c)tica: A treebank
for Portuguese. Proceedings of the Third
International Conference on Language Resources and Evaluation
(LREC’02). Anais...Las
Palmas, Canary Islands - Spain: European Language Resources Association
(ELRA), maio 2002. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2002/pdf/1.pdf>
AGHAJANYAN, A.; GUPTA, S.; ZETTLEMOYER, L. Intrinsic
Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning. (C. Zong et al., Eds.)Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021. Anais...Association for Computational
Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.568>
AGICHTEIN, E.; GRAVANO, L. Snowball: Extracting relations from
large plain-text collections. Proceedings of the fifth ACM
conference on Digital libraries. Anais...2000.
AGIRRE, E. Cross-Lingual Word
Embeddings. Computational Linguistics, v.
46, n. 1, p. 245–248, mar. 2020.
AHN, L. VON; KEDIA, M.; BLUM, M. Verbosity: A Game for
Collecting Common-Sense Facts. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
Anais...: CHI ’06.New York, NY, USA: Association for
Computing Machinery, 2006. Disponível em: <https://doi.org/10.1145/1124772.1124784>
AI and Ethics. Springer, 2023. Disponível em: <https://link.springer.com/journal/43681/volumes-and-issues>.
Acesso em: 7 abr. 2023
AJAY, H. B.; TILLET, P.; PAGE, E. B. Analysis of essays by
computer (AEC-II). Storrs, CT: Univeristy of
Connecticut, 1973.
AKÇAY, M. B.; OĞUZ, K. Speech emotion recognition: Emotional models,
databases, features, preprocessing methods, supporting modalities, and
classifiers. Speech Communication, v. 116, p. 56–76,
2020.
ALAM, T.; KHAN, A.; ALAM, F. Punctuation Restoration using
Transformer Models for High-and Low-Resource Languages.
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT
2020). Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.wnut-1.18>
ALCAIM, A.; SOLEWICZ, J. A.; MORAES, J. A. DE.
Freqüência de ocorrência dos
fones e listas de frases foneticamente balanceadas no
português falado no Rio de Janeiro. Journal of
Communication and Information Systems, v. 7, n. 1, 1992.
ALEIXO, P.; PARDO, T. A. S. CSTTool: um parser multidocumento
automático para o Português do
Brasil. IV Workshop on MSc Dissertation and PhD Thesis in
Artificial Intelligence–WTDIA. Anais...b2008.
ALEIXO, P.; PARDO, T. A. S. CSTNews: um córpus de textos
jornalísticos anotados segundo a teoria discursiva multidocumento CST
(Cross-document Structure Theory. [s.l.] Universidade de São
Paulo (USP); São Carlos, SP, Brasil., a2008. Disponível em:
<http://repositorio.icmc.usp.br//handle/RIICMC/6761>.
ALENCAR, L. F. DE. Donatus: uma
interface amigável para o estudo da sintaxe formal utilizando a
biblioteca em Python do NLTK. Alfa: Revista de Linguística
(São José do Rio Preto), v. 56, n. 2, p. 523–555, jul. 2012.
ALENCAR, L. F. DE; CUCONATO, B.; RADEMAKER, A. MorphoBr:
an open source large-coverage full-form lexicon for morphological
analysis of Portuguese. Texto Livre, v. 11, n. 3,
p. 1–25, dez. 2018.
ALENCAR, V.; ALCAIM, A. LSF and LPC-derived features for large
vocabulary distributed continuous speech recognition in Brazilian
Portuguese. 2008 42nd Asilomar Conference on Signals, Systems
and Computers. Anais...IEEE, 2008.
ALIKANIOTIS, D.; YANNAKOUDAKIS, H.; REI, M. Automatic Text
Scoring Using Neural Networks. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2016.
ALISSON, S. Their god is not our god. Disponível em:
<https://www.thecontinent.org/_files/ugd/287178_73f3d2af22614e678f277b631a62e491.pdf>.
Acesso em: 11 jun. 2023.
ALMEIDA, G. DE. Translating the post-editor: an investigation of
post-editing changes and correlations with professional experience
across two Romance languages. 2013. Disponível em: <https://api.semanticscholar.org/CorpusID:60255248>
ALTUNYURT, L.; ORHAN, Z.; GÜNGÖR, T. A Composite Approach for
Part of Speech Tagging in
Turkish. 2006. Disponível em: <https://api.semanticscholar.org/CorpusID:9439761>
ALUÍSIO, S. et al. An Account of the Challenge of Tagging a
Reference Corpus for Brazilian Portuguese. (N. J. Mamede et
al., Eds.)Computational Processing of the Portuguese Language.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2003.
ALVARES, R. V.; GARCIA, A. C. B.; FERRAZ, I. STEMBR: A stemming
algorithm for the Brazilian Portuguese language. Portuguese
conference on artificial intelligence.
Anais...Springer, 2005.
AMARAL, D. O. F. DO. O reconhecimento de entidades nomeadas por
meio de conditional random fields para a lı́ngua
portuguesa. Dissertação de Mestrado, Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2013.
AMARAL, D.; VIEIRA, R. Nerp-crf: uma ferramenta para o reconhecimento de
entidades nomeadas por meio de conditional random fields.
Linguamática (Braga), 2014.
AMORIM, E.; CANÇADO, M.; VELOSO, A. Automated Essay Scoring in
the Presence of Biased Ratings. Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Anais...Association for Computational Linguistics,
2018.
AMORIM, E.; VELOSO, A. A Multi-aspect Analysis of Automatic
Essay Scoring for Brazilian
Portuguese. Proceedings of the Student Research
Workshop at the 15th Conference of the European Chapter of
the Association for Computational Linguistics.
Anais...Valencia, Spain: Association for Computational
Linguistics, abr. 2017.
ANACLETO, J. et al. Can Common Sense uncover cultural
differences in computer applications? (M. Bramer,
Ed.)Artificial Intelligence in Theory and Practice.
Anais...Boston, MA: Springer US, 2006.
ANACLETO, J. C. et al. A Common Sense-Based On-Line Assistant
for Training Employees. (C. Baranauskas et al.,
Eds.)Human-Computer Interaction – INTERACT 2007.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.
ANANIADOU, S.; MCNAUGHT, J. Text Mining for Biology And
Biomedicine. Norwood, MA, USA: Artech House, Inc., 2005.
ANANTHAKRISHNAN, S.; NARAYANAN, S. S. Automatic Prosodic Event
Detection Using Acoustic, Lexical, and Syntactic Evidence.
IEEE Transactions on Audio, Speech, and Language
Processing, v. 16, n. 1, p. 216–228, 2008.
ANCHIÊTA, R. T. et al. PiLN IDPT 2021: Irony
Detection in Portuguese Texts with Superficial Features and
Embeddings. Proceedings of the Iberian Languages Evaluation
Forum (IberLEF 2021) co-located with the Conference of the Spanish
Society for Natural Language Processing (SEPLN 2021),
XXXVII International Conference of the Spanish Society for
Natural Language Processing., Málaga, Spain, September,
2021. Anais...2021.
ANDERSEN, P. M. et al. Automatic extraction of facts from press
releases to generate news stories. Third Conference on Applied
Natural Language Processing. Anais...1992.
ANTUNES, I. Lutar com palavras: coesão e
coerência. [s.l.] Parábola, 2007.
ANTUNES, I. Textualidade: noções
básicas e implicações
pedagógicas. [s.l.] Editora: Parábola Editorial,
2017.
ARAUJO, P. H. L. DE et al. LeNER-Br: A Dataset for
Named Entity Recognition in Brazilian Legal Text. Proceedings
of the 13th International Conference. Anais...2018.
ARDILA, R. et al. Common voice: A massively-multilingual speech corpus.
arXiv preprint arXiv:1912.06670, 2019.
Artificial
intelligence and human rights. 1. ed. [s.l.] Dykinson,
S.L., 2021.
ASAHARA, M.; MATSUMOTO, Y. Japanese named entity extraction with
redundant morphological analysis. Proceedings of the 2003 human
language technology conference of the North American chapter of the
association for computational linguistics.
Anais...2003.
ASHER, N. et al. Discourse structure and dialogue acts in
multiparty dialogue: the STAC corpus. 10th International
Conference on Language Resources and Evaluation (LREC 2016).
Anais...2016.
ASHER, N.; LASCARIDES, A. Logics of conversation.
[s.l.] Cambridge University Press, 2003.
ASHER, N.; VIEU, L. Subordinating and coordinating discourse relations.
Lingua, v. 115, n. 4, p. 591–610, 2005.
ASSI, F. M. et al. UFSCar’s Team at ABSAPT 2022:
Using Syntax, Semantics and Context for Solving the Tasks.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
AUER, S. et al. DBpedia: A Nucleus for a Web of Open
Data. (K. Aberer et al., Eds.)The Semantic Web.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.
AVANÇO, L. V.; NUNES, M. DAS G. V. Lexicon-Based Sentiment
Analysis for Reviews of Products in Brazilian Portuguese.
Proceedings of the 2014 Brazilian Conference on Intelligent Systems.
Anais...2014.
AZIZ, W.; SPECIA, L. Fully Automatic Compilation of a
Portuguese-English Parallel Corpus for Statistical Machine
Translation. STIL 2011. Anais...Cuiabá, MT:
2011.
BAADER, F. et al. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge, Reino Unido:
Cambridge University Press, 2003.
BÄCKSTRÖM, T. et al. Introduction to Speech
Processing. 2. ed. [s.l: s.n.].
BADENE, S. et al. Learning Multi-party Discourse Structure Using
Weak Supervision. 25th International conference on
computational linguistics and intellectual technologies (Dialogue 2019).
Anais...2019.
BAEVSKI, A. et al. wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations., 2020. Disponível em:
<https://arxiv.org/abs/2006.11477>
BAEZA-YATES, R. A.; RIBEIRO-NETO, B. A. Modern Information Retrieval-the
concepts and technology behind search. 2011.
BAEZA-YATES, R.; RIBEIRO-NETO, B.
Recuperação de
Informação-: Conceitos e Tecnologia das
Máquinas de Busca. [s.l.] Bookman Editora, 2013.
BAGGA, A.; BALDWIN, B. Algorithms for Scoring Coreference
Chains. Proceedings of the first International Conference on
Language Resources and Evaluation Workshop on Linguistics Coreference.
Anais...Granada, Spain: 1998.
BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by
Jointly Learning to Align and Translate. (Y. Bengio, Y. LeCun,
Eds.)3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Anais...San Diego, California.:
2015. Disponível em: <http://arxiv.org/abs/1409.0473>
BAKER, C. F.; FILLMORE, C. J.; LOWE, J. B. The
Berkeley FrameNet
Project. 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on
Computational Linguistics, Volume 1. Anais...Montreal,
Quebec, Canada: Association for Computational Linguistics, ago. 1998.
Disponível em: <https://aclanthology.org/P98-1013>
BAKER, C.; FELLBAUM, C.; PASSONNEAU, R. Semantic Annotation of MASC. Em:
Handbook of Linguistic Annotation. [s.l.] Springer
Netherlands, 2017. p. 699–717.
BALAGE FILHO, P. P.; PARDO, T. A. S.; ALUÍSIO, S. M. An
Evaluation of the Brazilian Portuguese LIWC Dictionary for Sentiment
Analysis. Proceedings of the 9th Brazilian Symposium in
Information and Human Language Technology.
Anais...2013.
BANARESCU, L. et al. Abstract Meaning
Representation for Sembanking. Proceedings of the
7th Linguistic Annotation Workshop and Interoperability with Discourse.
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, 2013. Disponível em: <http://aclweb.org/anthology/W13-2322>
BANERJEE, S.; LAVIE, A. METEOR: An Automatic Metric
for MT Evaluation with Improved Correlation with Human
Judgments. (J. Goldstein et al., Eds.)Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization.
Anais...Ann Arbor, Michigan: Association for
Computational Linguistics, jun. 2005. Disponível em: <https://aclanthology.org/W05-0909>
BANKO, M. et al. Open Information Extraction from the
Web. Proceedings of the 20th International Joint Conference on
Artifical Intelligence. Anais...: IJCAI’07.San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. Disponível
em: <http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9909B5C03DA1A3CCFFF4263898B69100?doi=10.1.1.74.5174&rep=rep1&type=pdf>
BARBOSA, G. C. G.; GLAUBER, R.; CLARO, D. B. Classificação de
Relações Abertas Utilizando Features Independentes do Idioma.
Proceedings of the 4th Symposium on Knowledge Discovery, Mining and
Learning (KDMiLe). Anais...SBC, 2016.
BARRAULT, L. et al. Findings of the 2019 Conference on
Machine Translation (WMT19). Proceedings of
WMT. Anais...Florence, Italy: 2019.
BARRAULT, L. et al. Findings of the 2020 Conference on Machine
Translation (WMT20). Proceedings of the Fifth
Conference on Machine Translation. Anais...Online:
Association for Computational Linguistics, nov. 2020. Disponível em:
<https://www.aclweb.org/anthology/2020.wmt-1.1>
BARREIRA, R.; PINHEIRO, V.; FURTADO, V.
FrameFOR – Uma Base de
Conhecimento de Frames Semânticos para
Perı́cias de Informática
(FrameFOR - a Knowledge Base of Semantic
Frames for Digital Forensics)[In Portuguese].
Proceedings of the 11th Brazilian Symposium in Information
and Human Language Technology.
Anais...Uberlândia, Brazil: Sociedade
Brasileira de Computação, out. 2017.
Disponível em: <https://aclanthology.org/W17-6620>
BARROS, D. L. P. DE. Introdução à Linguística II: princípios de análise.
Em: FIORIN, J. L. (Ed.). 5. ed. São Paulo: Contexto, 2021. p. 187–219.
BASSO, R. M. A Semântica das
Relações Anafóricas entre
Eventos. tese de doutorado—[s.l.] Universidade Estadual de
Campinas, SP, 2009.
BATES, M. et al. Research in Knowledge
Representation for Natural Language Understanding: Bolt, Beranek, and
Newman. SIGART Bull., n. 79, p. 30–31, jan. 1982.
BATISTA, C.; DIAS, A. L.; NETO, N. Free resources for
forced phonetic alignment in Brazilian
Portuguese based on Kaldi toolkit.
EURASIP Journal on Advances in Signal Processing, v.
2022, n. 1, p. 11, 19 fev. 2022.
BECKMAN, M. E.; HIRSCHBERG, J.; SHATTUCK-HUFNAGEL, S. The
original ToBI system and the evolution of the
ToBI framework. Em: JUN, S.-A. (Ed.). Prosodic
typology: the phonology of intonation and phrasing. Oxford:
Oxford University Press, 2005. p. 9–54.
BELTAGY, I.; PETERS, M. E.; COHAN, A. Longformer: The Long-Document
Transformer. CoRR, v. abs/2004.05150, 2020.
BENDER, E. M. Linguistic Fundamentals
for Natural Language Processing: 100 Essentials from Morphology and
Syntax. Springer Nature Switzerland AG 2013: Springer Cham,
1959. p. XVII–166
BENDER, E. M. Linguistically Naïve != Language
Independent: Why NLP Needs Linguistic Typology.
Proceedings of the EACL 2009 Workshop on the Interaction
between Linguistics and Computational Linguistics: Virtuous, Vicious or
Vacuous? Anais...Athens, Greece: Association for
Computational Linguistics, mar. 2009. Disponível em: <https://www.aclweb.org/anthology/W09-0106>
BENDER, E. M. The Power of Linguistics - Unpacking Natural
Language Processing Ethics with Emily M. Bender. [Podcast].
Disponível em: <https://www.radicalai.org/e16-emily-bender>.
Acesso em: 7 abr. 2023.
BENDER, E. M. et al. On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big? 🦜. Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency.
Anais...: FAccT ’21.New York, NY, USA: Association for
Computing Machinery, 2021. Disponível em: <https://doi.org/10.1145/3442188.3445922>
BENDER, E. M. You Are Not a Parrot And a chatbot is not a human.
And a linguist named Emily M. Bender is very worried what will happen
when we forget this. Disponível em: <https://nymag.com/intelligencer/article/ai-artificial-intelligence-chatbots-emily-m-bender.html>.
Acesso em: 9 abr. 2023.
BENDER, E. M.; FRIEDMAN, B. Data Statements for Natural
Language Processing: Toward Mitigating System Bias and Enabling Better
Science. Transactions of the Association for Computational
Linguistics, v. 6, p. 587–604, 2018.
BENGIO, Y. et al. A Neural Probabilistic Language Model. J.
Mach. Learn. Res., v. 3, n. null, p. 1137–1155, mar. 2003.
BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, v. 35, n. 8, p. 1798–1828, 2013.
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Exploring Word
Embeddings for Unsupervised Textual User-Generated Content
Normalization. Proceedings of the 2nd Workshop on Noisy
User-generated Text (WNUT). Anais...Osaka,
Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em:
<https://aclanthology.org/W16-3916>
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Normalização textual de
conteúdo gerado por usuário. mathesis—[s.l.] Universidade de
São Paulo, 2017.
BERTOLDI, A. Os Limites da Criação
Automática de Léxicos Computacionais Baseados
em Frames: Um Estudo Contrastivo do Frame Criminal_process
(The Limits of the Automatic Creation of Frame-based Computational
Lexicons: a Contrastive Study of the Criminal_process
Frame) [in Portuguese]. Proceedings of the 8th
Brazilian Symposium in Information and Human Language
Technology. Anais...2011. Disponível em: <https://aclanthology.org/W11-4510>
BERTSCH, A. et al. Unlimiformer:
Long-Range Transformers with Unlimited Length Input.
CoRR, v. abs/2305.01625, 2023.
BERWICK, R. C.; CHOMSKY, N. Por que apenas nós?
Linguagem e evolução. [s.l.]
SciELO-Editora UNESP, 2017.
BHARDWAJ, S.; AGGARWAL, S.; MAUSAM, M. CaRB: A crowdsourced
benchmark for open IE. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...2019.
BIBAL, A. et al. Is Attention Explanation? An Introduction to
the Debate. Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Dublin, Ireland: Association for Computational
Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.acl-long.269>
BICK, E. The Parsing
System "Palavras": Automatic Grammatical Analysis of Portuguese in a
Constraint Grammar Framework. tese de doutorado—[s.l.]
Aarhus University Press, Denmark; University of Arhus, 2000.
BICK, E. A dependency-based approach to anaphora
annotation. Proceedings of th 9th International Conference on
Computational Processing of the Portuguese Language.
Anais...Porto Alegre, Brazil: 2010.
BICK, E. S. PFN-PT:
A Framenet Annotator for Portuguese: Anotação semântica automática: um
novo Framenet para o português. Domínios de
Linguagem, v. 16(4)7, p. 1401–1435, 2009.
BIDERMAN, M. T. C. Teoria linguística:
linguística quantitativa e computacional. Rio de
Janeiro: Martins Fontes, 1978.
BIKEL, D. M.; SCHWARTZ, R.; WEISCHEDEL, R. M. An algorithm that learns
what’s in a name. Machine learning, v. 34, p. 211–231,
1999.
BIRD, S.; LOPER, E. NLTK: The Natural Language
Toolkit. Proceedings of the ACL Interactive Poster
and Demonstration Sessions. Anais...Barcelona, Spain:
Association for Computational Linguistics, jul. 2004. Disponível em:
<https://aclanthology.org/P04-3031>
BIRON, T. et al. Automatic detection
of prosodic boundaries in spontaneous speech. PLoS
ONE, v. 16, n. 5, p. 1–21, maio 2021.
BITTENCOURT JR., J. A. S. Avaliação
automática de redação em língua
portuguesa empregando redes neurais profundas. mathesis—[s.l.]
Universidade Federal de Goiás, 2020.
BLACKBURN, P.; BOS, J. Representation and Inference for Natural
Language: A First Course in Computational Semantics. [s.l.]
Center for the Study of Language; Information, 2005.
BLEI, D. M.; MORENO, P. J. Topic Segmentation with an Aspect
Hidden Markov Model. Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval. Anais...New
York, NY, USA: Association for Computing Machinery, 2001.
BLOM, J. D. A dictionary of hallucinations. [s.l.]
Springer, 2010.
BOBROW, D. G. et al. GUS, a frame-driven
dialog system. Artificial Intelligence, v. 8, n. 2,
p. 155–173, 1977.
BOERSMA, P.; WEENINK, D. Praat: doing phonetics by computer
[Computer program]. Version 6.3.10.,
2023. Disponível em: <http://www.praat.org/>
BOJANOWSKI, P. et al. Enriching Word Vectors with Subword Information.
Transactions of the Association for Computational
Linguistics, v. 5, p. 135–146, 2017.
BOJAR, O. et al. Findings of the 2016 Conference on
Machine Translation. Proceedings of the First Conference
on Machine Translation. Anais...Berlin, Germany:
Association for Computational Linguistics, 2016.
BOND, F.; FOSTER, R. Linking and extending an open multilingual
wordnet. Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-1133>
BONIFACIO, L. H. et al. mMARCO: A Multilingual Version of MS
MARCO Passage Ranking Dataset., 2021. Disponível em: <https://arxiv.org/abs/2108.13897>
BOWMAN, S. R. et al. A large annotated corpus for learning
natural language inference. Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing.
Anais...Lisbon, Portugal: Association for Computational
Linguistics, set. 2015. Disponível em: <https://aclanthology.org/D15-1075>
BRANDES, N. et al. ProteinBERT: a
universal deep-learning model of protein sequence and function.
Bioinform., v. 38, n. 8, p. 2102–2110, 2022.
BRANDOM, R. B. Articulating Reasons: An Introduction to
Inferentialism. Cambridge, Massachusetts, EUA: Harvard
University Press, 2001.
BRAUDE, D. A.; SHIMODAIRA, H.; YOUSSEF, A. B. Template-warping
based speech driven head motion synthesis. Interspeech.
Anais...2013.
BRAUN, H. I. Understanding Scoring Reliability: Experiments in
Calibrating Essay Readers. Journal of Educational
Statistics, v. 13, n. 1, p. 1–18, 1988.
BREEN, J. JMdict: a
Japanese-Multilingual Dictionary. Proceedings of
the Workshop on Multilingual Linguistic Resources.
Anais...Geneva, Switzerland: COLING, 2004. Disponível
em: <https://aclanthology.org/W04-2209>
BREITFELLER, L. et al. Finding Microaggressions in the Wild: A
Case for Locating Elusive Phenomena in Social Media Posts.
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP).
Anais...2019.
BREWSTER, C.; WILKS, Y. Ontologies, taxonomies,
thesauri:learning from texts. (M. Deegan, Ed.)Proceedings of
Use of Computational Linguistics in the Extraction of Keyword
Information from Digital Library Content Workshop.
Anais...2004. Disponível em: <http://www.cbrewster.com/papers/KeyWord_FMO.pdf>
BRIDGEMAN, B. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 221–232.
BRILL, E. A Simple
Rule-Based Part of
Speech Tagger. Proceedings of the
Third Conference on Applied Natural Language Processing.
Anais...: ANLC ’92.USA: Association for Computational
Linguistics, 1992. Disponível em: <https://doi.org/10.3115/974499.974526>
BRIN, S. Extracting patterns and relations from the world wide
web. International workshop on the world wide web and
databases. Anais...Springer, 1998.
BROWN, P. et al. A statistical approach to language
translation. Proceedings of the 12th conference on
Computational linguistics -.
Anais...Budapest, Hungry: Association for Computational
Linguistics, 1988. Disponível em: <http://portal.acm.org/citation.cfm?doid=991635.991651>.
Acesso em: 10 jun. 2020
BROWN, T. B. et al. Language Models are Few-Shot
Learners. (H. Larochelle et al., Eds.)Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual. Anais...2020. Disponível em: <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>
BRUM, H.; NUNES, M. DAS G. V. Building a Sentiment Corpus
of Tweets in Brazilian Portuguese. (N. C. (Conference
chair) et al., Eds.)Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018).
Anais...Miyazaki, Japan: European Language Resources
Association (ELRA), mar. 2018.
BUCKLEY, C.; VOORHEES, E. M. Evaluating evaluation measure
stability. ACM SIGIR Forum. Anais...ACM New
York, NY, USA, 2017.
BUENO, R. O. et al. Overview of the Task on Irony Detection in
Spanish Variants. Proceedings of the Iberian Languages
Evaluation Forum co-located with 35th Conference of the Spanish Society
for Natural Language Processing. Anais...2019.
BUOLAMWINI, J.; GEBRU, T. Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification. (S. A.
Friedler, C. Wilson, Eds.)Proceedings of the 1st Conference on Fairness,
Accountability and Transparency. Anais...: Proceedings
of Machine Learning Research.PMLR, 2018. Disponível em: <https://proceedings.mlr.press/v81/buolamwini18a.html>
CABRAL, B.; SOUZA, M.; CLARO, D. B. PortNOIE: A Neural Framework
for Open Information Extraction for the Portuguese Language.
International Conference on Computational Processing of the Portuguese
Language. Anais...Springer, 2022.
CABRAL, L. et al. FakeWhastApp.BR: NLP and Machine Learning
Techniques for Misinformation Detection in Brazilian Portuguese WhatsApp
Messages. Proceedings of the International Conference on
Enterprise Information Systems. Anais...2021.
CABRÉ, M. T. La terminología:
representación y comunicación. [s.l.]
Editora: Documenta Universitaria, 1999.
CABRÉ, M. T. A Terminologia, uma disciplina em
evolução: passado, presente e alguns elementos
de futuro. Debate Terminológico. ISSN:
1813-1867, n. 01, 2005.
CAMERON, H.; OLIVAL, F.; VIEIRA, R. Planear a normalização
automática: tipologia de variação gráfica do corpus das Memórias
Paroquiais (1758). LaborHistórico, v. 9, n. 1, p.
52234, 2023.
CANDIDO JUNIOR, A. et al. CORAA: a large
corpus of spontaneous and prepared speech manually validated for speech
recognition in Brazilian Portuguese. CoRR, v.
abs/2110.15731, 2021.
CANDIDO JUNIOR, A. et al. CORAA
ASR: a large corpus of spontaneous and prepared speech manually
validated for speech recognition in Brazilian
Portuguese. Language Resources &
Evaluation, 2022.
CARDOSO, N. Rembrandt - a named-entity recognition
framework. Proceedings of the Eighth International Conference
on Language Resources and Evaluation. Anais...Istanbul,
Turkey: 2012. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2012/summaries/409.html>
CARDOSO, P. C. F. et al. CSTNews-a discourse-annotated corpus
for single and multi-document summarization of news texts in Brazilian
Portuguese. Proceedings of the 3rd RST Brazilian Meeting.
Anais...2011.
CARDOSO, P. C. F. Exploração de
métodos de sumarização
automática multidocumento com base em conhecimento
semântico-discursivo. tese de doutorado—[s.l.]
Universidade de São Paulo, 2014.
CARL, M.; WAY, A. (EDS.). Recent
Advances in Example-Based
Machine Translation. [s.l.]
Springer Netherlands, 2003.
CARLSON, L.; MARCU, D. Discourse tagging reference manual. ISI
Technical Report ISI-TR-545, v. 54, n. 2001, p. 56, 2001.
CARMO, D. et al. PTT5: Pretraining
and validating the T5 model on Brazilian Portuguese
data. CoRR, v. abs/2008.09144, 2020.
CARPINETO, C.; ROMANO, G. A survey of automatic query expansion in
information retrieval. Acm Computing Surveys (CSUR), v.
44, n. 1, p. 1–50, 2012.
CARVALHO, F.; SANTOS, G. DOS; GUEDES, G. P. AffectPT-br: an
Affective Lexicon based on LIWC 2015. Proceedings of the 37th
International Conference of the Chilean Computer Science Society.
Anais...2018.
CARVALHO, P. et al. Clues for Detecting Irony in User-Generated
Contents: Oh...!! It’s "so Easy" ;-). Proceedings of the 1st
International CIKM Workshop on Topic-Sentiment Analysis for Mass
Opinion. Anais...2009.
CARVALHO, P.; SILVA, M. J. SentiLex-PT 02.
https://b2share.eudat.eu, 2017. Disponível em: <https://b2share.eudat.eu/records/93ab120efdaa4662baec6adee8e7585f>
CASANOVA, E. Síntese de voz aplicada ao português
brasileiro usando aprendizado profundo. {B.S.} thesis—[s.l.]
Universidade Tecnológica Federal do Paraná,
2019.
CASANOVA, E. et al. TTS-Portuguese
Corpus: a corpus for speech synthesis in
Brazilian Portuguese. Language
Resources and Evaluation, v. 56, n. 3, p. 1043–1055, 2022.
CASANOVA, E.; SHULBY, C. D.; ALUÍSIO, S. M. Deep learning approaches for
speech synthesis and speaker verification. Acoustic
communication: an interdisciplinary approach, 2021.
CASELI, H. DE M.; FREITAS, C.; VIOLA, R. Processamento
de Linguagem Natural. Em: Tópicos em Gerenciamento de Dados
e Informações: Minicursos do SBBD 2022. [s.l.] Sociedade
Brasileira de Computação, 2022. p. 1–28.
CASTANO, A.; CASACUBERTA, F. A connectionist approach to machine
translation. 5th European Conference on Speech Communication
and Technology (Eurospeech 1997). Anais...ISCA, set.
1997. Disponível em: <http://dx.doi.org/10.21437/eurospeech.1997-50>
CASTILHO, A. T. DE. O português culto falado no Brasil:
história do Projeto NURC. Em: PRETI, D.;
URBANO, H. (Eds.). A linguagem falada culta na cidade de
São Paulo. São Paulo, SP:
TAQ/Fapesp, 1990. v. 4 – Estudosp. 141–292.
CASTILHO, A. T. DE. Gramática do
Português Brasileiro: fundamentos, perspectivas. Cadernos de
Linguística, v. 2, n. 1, p. e252, abr. a2021.
CASTILHO, S. et al. Does post-editing increase usability? A
study with Brazilian Portuguese as Target Language. Proceedings
of the 17th annual conference of the European association for machine
translation. Anais...2014.
CASTILHO, S. et al. A comparative quality evaluation of PBSMT
and NMT using professional translators. Proceedings of Machine
Translation Summit XVI: Research Track. Anais...a2017.
CASTILHO, S. et al. Is Neural
Machine Translation the New
State of the Art? The Prague
Bulletin of Mathematical Linguistics, v. 108, n. 1, p. 109–120,
jun. b2017.
CASTILHO, S. et al. Approaches to Human and Machine Translation
Quality Assessment. Em: Translation Quality
Assessment: From Principles to Practice. Machine
Translation: Technologies e Applications. [s.l.] Springer International
Publishing, 2018. v. 1p. 9–38.
CASTILHO, S. et al. Editors’ foreword to
the special issue on human factors in neural machine translation.
Machine Translation, v. 33, n. 1–2, p. 1–7, maio 2019.
CASTILHO, S. On the Same Page? Comparing IAA in
Sentence and Document Level Human MT Evaluation. Proceedings of
the Fifth Conference on Machine Translation.
Anais...Association for Computational Linguistics, nov.
2020. Disponível em: <https://www.aclweb.org/anthology/2020.wmt-1.137>
CASTILHO, S. Towards Document-Level Human MT
Evaluation: On the Issues of Annotator Agreement, Effort and
Misevaluation. Proceedings of the Workshop on Human Evaluation
of NLP Systems. Anais...Association for Computational
Linguistics, abr. b2021. Disponível em: <https://www.aclweb.org/anthology/2021.humeval-1.4>
CASTILHO, S. et al. DELA Corpus - A Document-Level
Corpus Annotated with Context-Related Issues. Proceedings of
the Sixth Conference on Machine Translation.
Anais...Online: Association for Computational
Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.wmt-1.63>
CASTILHO, S. How Much Context Span is Enough? Examining
Context-Related Issues for Document-level MT. Proceedings of
the Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.323>
CASTILHO, S. et al. Translation Systems Care for Context? What
About a GPT Model? Proceedings of the 24th Annual Conference of
the European Association for Machine Translation.
Anais...Tampere, Finland: EAMT, 2023. Disponível em:
<https://events.tuni.fi/uploads/2023/06/11678752-proceedings-eamt2023.pdf>
CASTILHO, S.; RESENDE, N. Post-Editese in Literary Translations.
Information, v. 13, n. 2, p. 66, 2022.
CASTILHO, S.; RESENDE, N.; MITKOV, R. What Influences the
Features of Post-editese? A Preliminary Study. Proceedings of
the Human-Informed Translation and Interpreting Technology Workshop
(HiT-IT 2019). Anais...Varna, Bulgaria: Incoma Ltd.,
Shoumen, Bulgaria, set. 2019. Disponível em: <https://aclanthology.org/W19-8703>
CASTRO, P. V. Q. DE; SILVA, N. F. F. DA; SOARES, A. DA S.
Portuguese Named Entity Recognition Using
LSTM-CRF. (A. Villavicencio et al.,
Eds.)Proceedings of the 13th International Conference on the
Computational Processing of the Portuguese Language.
Anais...2018.
CAVALIERE, P.; ROMEO, G. From Poisons to Antidotes:
Algorithms as Democracy Boosters. European Journal of Risk
Regulation, v. 13, n. 3, p. 421–442, 2022.
CHALMERS, D. J. Syntactic transformations on distributed
representations. Connectionist Natural Language Processing:
Readings from Connection Science, p. 46–55, 1992.
CHANDRAN, R. Indigenous groups in NZ, US fear colonisation as AI
learns their languages. Disponível em: <https://www.context.news/ai/nz-us-indigenous-fear-colonisation-as-bots-learn-their-languages>.
Acesso em: 7 abr. 2023.
CHANG, K.-W. et al. Illinois-Coref: The UI system in the
CoNLL-2012 shared task. Joint Conference on EMNLP and
CoNLL-Shared Task. Anais...Association for
Computational Linguistics, 2012.
CHARPENTIER, F.; STELLA, M. Diphone synthesis using an
overlap-add technique for speech waveforms concatenation.
ICASSP’86. IEEE International Conference on Acoustics, Speech, and
Signal Processing. Anais...IEEE, 1986.
CHE, X. et al. Punctuation Prediction for Unsegmented Transcript
Based on Word Vector. Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16).
Anais...Portorož, Slovenia: European
Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1103>
CHEN, A.; CHEN, D. O. Simulation of a machine learning enabled learning
health system for risk prediction using synthetic patient data.
Scientific Reports, v. 12, n. 1, p. 17917, out. 2022.
CHEN, K.; HASEGAWA-JOHNSON, M. A. How prosody improves word
recognition. Speech Prosody 2004.
Anais...2004.
CHEN, L.-W.; RUDNICKY, A. Exploring Wav2vec 2.0 Fine Tuning for
Improved Speech Emotion Recognition. ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Anais...IEEE, 2023.
CHEN, P. P. The
Entity-Relationship Model - Toward a Unified View of Data.
ACM Trans. Database Syst., v. 1, n. 1, p. 9–36, 1976.
CHILD, R. et al. Generating
Long Sequences with Sparse Transformers. CoRR, v.
abs/1904.10509, 2019.
CHO, K. et al. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine
Translation. (A. Moschitti, B. Pang, W. Daelemans,
Eds.)Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL. Anais...ACL, 2014.
Disponível em: <https://doi.org/10.3115/v1/d14-1179>
CHOWDHERY, A. et al. PaLM: Scaling Language
Modeling with Pathways. CoRR, v. abs/2204.02311,
2022.
CHRISMAN, L. Learning recursive distributed representations for holistic
computation. Connection Science, v. 3, n. 4, p.
345–366, 1991.
CHRISTIANO, P. F. et al. Deep Reinforcement Learning from Human
Preferences. (I. Guyon et al., Eds.)Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. Anais...2017. Disponível em: <https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html>
CHUNG, Y.-A.; GLASS, J. Speech2Vec:
A Sequence-to-Sequence Framework for Learning Word Embeddings from
Speech. Proc. Interspeech 2018.
Anais...2018.
CIERI, C.; MILLER, D.; WALKER, K. The Fisher Corpus: a Resource
for the Next Generations of Speech-to-Text. Proceedings of the
Fourth International Conference on Language Resources and Evaluation
(LREC’04). Anais...Lisbon,
Portugal: European Language Resources Association (ELRA), 2004.
Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/767.pdf>
CIGNARELLA, A. T. et al. Overview of the EVALITA
2018 Task on Irony Detection in Italian Tweets (IronITA).
Proceedings of the Sixth Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final Workshop
(EVALITA 2018) co-located with the Fifth Italian Conference
on Computational Linguistics (CLiC-it 2018).
Anais...2018.
CLARK, K. et al. ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators. 8th
International Conference on Learning Representations, ICLR
2020. Anais...Addis Ababa, Ethiopia: OpenReview.net,
abr. 2020. Disponível em: <https://openreview.net/forum?id=r1xMH1BtvB>
CLIFTON, A. et al. 100,000 podcasts: A spoken English document
corpus. Proceedings of the 28th International Conference on
Computational Linguistics. Anais...2020.
COECKELBERGH, M. Artificial
Intelligence, Responsibility Attribution, and a Relational Justification
of Explainability. Science and Engineering Ethics,
v. 26, p. 2051–2068, 2020.
COELLO, J. M. A.; JUNQUEIRA, B. A. Automatic Analysis of Facebook Posts
and Comments Written in Brazilian Portuguese. International
Journal for Innovation Education and Research, 2019.
COHEN, A. D. et al. LaMDA: Language Models for Dialog Applications. Em:
arXiv. [s.l: s.n.].
COHEN, J. A
Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, v. 20, n. 1, p. 37–46, 1960.
COLLOBERT, R.; WESTON, J. A unified architecture for natural
language processing: deep neural networks with multitask
learning. (W. W. Cohen, A. McCallum, S. T. Roweis, Eds.)Machine
Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008.
Anais...: ACM International Conference
Proceeding Series.ACM, 2008. Disponível em: <https://doi.org/10.1145/1390156.1390177>
COLLOVINI, S. et al. Summ-it: Um Corpus Anotado com Informações
Discursivas Visando a Sumarização Automática.
Proceedings of V Workshop em Tecnologia da Informação e da Linguagem
Humana. Anais...Rio de Janeiro, Brasil: 2007.
COLLOVINI, S. et al. Extraction of Relation Descriptors for
Portuguese Using Conditional Random Fields. Proceedings of the
14th Ibero-American Conference on Advances in Artificial Intelligence.
Anais...Santiago de Chile: 2014.
COLLOVINI, S. et al. IberLEF 2019 Portuguese Named Entity
Recognition and Relation Extraction Tasks. [s.l: s.n.].
COMMISSION, E. Proposal for a Regulation laying down harmonised
rules on artificial intelligence. Disponível em: <
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
>. Acesso em: 28 ago. 2023.
CONCEIÇÃO, M. C.; ZANOLA, M. T. Terminologia e
mediação linguı́stica:
métodos, práticas e atividades.
Universidade do Algarve Editora, 2020.
CONNEAU, A. et al. Unsupervised cross-lingual representation
learning at scale. Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.
Anais...2020.
CONNEAU, A.; LAMPLE, G. Cross-Lingual Language Model Pretraining. Em:
Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2019.
CONSOLI, B. S. et al. Embeddings for Named Entity Recognition in
Geoscience Portuguese Literature. Proceedings of The 12th
Language Resources and Evaluation Conference.
Anais...2020.
CONSORTIUM, L. D. ACE (Automatic Content Extraction)
English Annotation Guidelines for Events. Version, n.
5.4.3, 2005.
COPESTAKE, A. et al. Minimal recursion semantics: An introduction.
Research on language and computation, v. 3, p. 281–332,
2005.
CORDEIRO, P. R.; PINHEIRO, V. Um corpus de notıcias
falsas do twitter e verificaçao automática de
rumores em lıngua portuguesa. Proceedings of the
Symposium in Information and Human Language Technology.
Anais...2019.
COREIXAS, T. Resolução De Correferência E Categorias De
Entidades Nomeadas. Dissertação de Mestrado, Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2010.
CORMEN, T. et al. Introduction to Algorithms. Em: 2. ed. [s.l.] MIT
Press; McGraw-Hill, 2001.
CORNU, G. Linguistique juridique. [s.l: s.n.].
CORRÊA, U. B. Análise de sentimento baseada em aspectos usando
aprendizado profundo: uma proposta aplicada à língua
portuguesa. tese de doutorado—[s.l.] Universidade Federal de
Pelotas, 2021.
CORTES, C.; VAPNIK, V. Support-Vector
Networks. Mach. Learn., v. 20, n. 3, p. 273–297,
set. 1995.
CORTIZ, D. et al. A Weakly Supervised Dataset of Fine-Grained
Emotions in Portuguese. Anais do XIII Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível
em: <https://sol.sbc.org.br/index.php/stil/article/view/17786>
COSTA, A. et al. A
linguistically motivated taxonomy for Machine Translation error
analysis. Machine Translation, v. 29, n. 2, p.
127–161, 2015.
COUILLAULT, A. et al. Evaluating corpora documentation with
regards to the Ethics and Big Data Charter. Proceedings of the
Ninth International Conference on Language Resources and Evaluation
(LREC’14). Anais...Reykjavik, Iceland:
European Language Resources Association (ELRA), 2014. Disponível em:
<http://www.lrec-conf.org/proceedings/lrec2014/pdf/424_Paper.pdf>
COWIE, J. R. Automatic analysis of descriptive texts.
First Conference on Applied Natural Language Processing.
Anais...1983.
COWIE, J.; LEHNERT, W. Information extraction. Communications of
the ACM, v. 39, n. 1, p. 80–91, 1996.
CRISTEA, D.; IDE, N.; ROMARY, L. Veins theory: A model of global
discourse cohesion and coherence. Coling-ACL Conference.
Anais...1998.
CROFT, W. B.; METZLER, D.; STROHMAN, T. Search engines:
Information retrieval in practice. [s.l.] Addison-Wesley, 2010.
v. 520
CRUZ, B. S. Concessionária do Metrô de SP é processada por ter
câmeras que leem nossas emoções. Disponível em: <
https://www.uol.com.br/tilt/noticias/redacao/2018/08/31/concessionaria-do-metro-de-sp-e-processada-por-ter-cameras-que-leem-emocoes.htm
>. Acesso em: 29 ago. 2023.
CRUZ, B. S. Racismo Calculado. Disponível em: <
https://www.uol.com.br/tilt/reportagens-especiais/como-os-algoritmos-espalham-racismo/#cover
>. Acesso em: 29 ago. 2023.
CUCCHIARELLI, A.; VELARDI, P. Unsupervised named entity recognition
using syntactic and semantic contextual evidence. Computational
Linguistics, v. 27, n. 1, p. 123–131, 2001.
CUI, H. et al. Probabilistic query expansion using query
logs. Proceedings of the 11th international conference on World
Wide Web. Anais...2002.
CUI, L.; WEI, F.; ZHOU, M. Neural Open Information
Extraction. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers).
Anais...2018.
CULOTTA, A.; MCCALLUM, A.; BETZ, J. Integrating probabilistic
extraction models and data mining to discover relations and patterns in
text. Proceedings of the Human Language Technology Conference
of the NAACL, Main Conference. Anais...2006.
CUNHA, L. C. C. DA. Um Corpus anotado de mensagens do WhatsApp
em PT-BR para detecção automática de desinformação textual. https://github.com/cabrau/FakeWhatsApp.Br, 2021.
DA SILVA JR., J. A. Um avaliador automático de
redações. mathesis—[s.l.]
Universidade Federal do Espírito Santo, 2021.
DADICO, C. M. O Ódio Ancestral Como Elemento Constitutivo Do
Estado Moderno e Seus Reflexos Na Compreensão dos Crimes De Ódio: Um
Diálogo Entre o Direito Internacional e o Direito Brasileiro.
tese de doutorado—Porto Alegre, RS, Brazil: Programa de Pós-Grduação em
Ciências Criminais da Escola de Direito da Pontifícia Universidade
Católica do Rio Grande do Sul, 2020.
DAHL, V. Natural
language processing and logic programming. Journal of Logic
Programming, v. 19-20, n. 1, p. 681–714, 1994.
DAI, Z. et al. Transformer-XL: Attentive Language Models beyond
a Fixed-Length Context. (A. Korhonen, D. R. Traum, L. Màrquez,
Eds.)Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers.
Anais...Association for Computational Linguistics,
2019. Disponível em: <https://doi.org/10.18653/v1/p19-1285>
DALIANIS, H. Characteristics of
Patient Records and Clinical Corpora. Em: Clinical Text
Mining: Secondary Use of Electronic Patient Records. Cham:
Springer International Publishing, 2018. p. 21–34.
DARPA (ED.). Proceedings of the 3rd Message Understanding
Conference (MUC-3). San Diego, EUA: Morgan Kaufmann, 1991.
DE PAIVA, V. et al. An overview of Portuguese
wordnets. Proceedings of the 8th Global WordNet Conference
(GWC). Anais...2016.
DE PAIVA, V.; RADEMAKER, A.; MELO, G. DE. OpenWordNet-PT: An
Open Brazilian Wordnet for Reasoning.
Proceedings of COLING 2012: Demonstration Papers.
Anais...2012.
DE SOUSA, S. C.; AZIZ, W.; SPECIA, L. Assessing the post-editing
effort for automatic and semi-automatic translations of DVD
subtitles. Proceedings of the International Conference Recent
Advances in Natural Language Processing 2011.
Anais...2011.
DEERWESTER, S. et al. Indexing by latent semantic analysis.
Journal of the American society for information
science, v. 41, n. 6, p. 391–407, 1990.
DEJONG, G. Prediction and substantiation: A new approach to natural
language processing. Cognitive Science, v. 3, n. 3, p.
251–273, 1979.
DEL CORRO, L.; GEMULLA, R. Clausie: clause-based open
information extraction. Proceedings of the 22nd international
conference on World Wide Web. Anais...: WWW ’13.New
York, NY, USA: ACM; ACM, 2013. Disponível em: <http://doi.acm.org/10.1145/2488388.2488420>
DEMNER-FUSHMAN, D.; CHAPMAN, W. W.; MCDONALD, C. J. What can natural
language processing do for clinical decision support? J Biomed
Inform, v. 42, n. 5, p. 760–772, ago. 2009.
DEMPSEY, P. The teardown: Google Home personal assistant.
Engineering & Technology, v. 12, n. 3, p. 80–81,
2017.
DETTMERS, T. et al. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv preprint arXiv:2305.14314, 2023.
DEVLIN, J. et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. (J.
Burstein, C. Doran, T. Solorio, Eds.)Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019.
Anais...Minneapolis, MN, USA: Association for
Computational Linguistics, 2019. Disponível em: <https://doi.org/10.18653/v1/n19-1423>
DHUMAL DESHMUKH, R.; KIWELEKAR, A. Deep Learning
Techniques for Part of Speech Tagging by Natural Language
Processing. 2020 2nd International Conference on Innovative
Mechanisms for Industry Applications (ICIMIA).
Anais...mar. 2020.
DI GANGI, M. A. et al.
MuST-C: a
Multilingual Speech Translation
Corpus. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Anais...Minneapolis, Minnesota: Association
for Computational Linguistics, jun. 2019. Disponível em: <https://aclanthology.org/N19-1202>
DIAS-DA-SILVA, B. C. A face tecnológica dos estudos
da linguagem: o processamento automático das
lı́nguas naturais. 1996. 272f. tese de
doutorado—[s.l.] Tese (Doutorado em
Lingüı́stica e Lı́ngua
Portuguesa)–Faculdade de Ciências e …, 1996.
DIAS-DA-SILVA, B. C. Wordnet.Br: An Exercise of Human Language
Technology Research. Proceedings of the Third International
WordNet Conference. Anais...2005. Disponível em: <http://semanticweb.kaist.ac.kr/conference/gwc/pdf2006/6.pdf>
DIAS-DA-SILVA, B. C.; MORALES, H. R. DE. A Construção de um Thesaurus
Eletrônico para o Português. Alfa, 2003.
DIAZ, F.; MITRA, B.; CRASWELL, N. Query Expansion with
Locally-Trained Word Embeddings. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics.
Anais...2016.
DODDINGTON, G. Automatic Evaluation of Machine Translation
Quality Using N-Gram Co-Occurrence Statistics. Proceedings of
the Second International Conference on Human Language Technology
Research. Anais...: HLT ’02.San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.
DODDINGTON, G. R. et al. The automatic content extraction (ace)
program-tasks, data, and evaluation. Lrec.
Anais...Lisbon, 2004.
DOHERTY, S. et al. Mapping the industry I:
Findings on translation technologies and quality
assessment. QTLaunchPad – Mapping the Industry I: Findings on
Translation Technologies and Quality Assessment.
Anais...GALA, 2013. Disponível em: <http://doras.dcu.ie/19474/1/Version_Participants_Final.pdf>.
Acesso em: 11 nov. 2015
DOHERTY, S. et al. On Education and
Training in Translation Quality Assessment. Em: MOORKENS, J. et al.
(Eds.). Translation Quality Assessment: From Principles to
Practice. Cham: Springer International Publishing, 2018. p.
95–106.
DONG, Q. et al. A
Survey for In-context Learning. CoRR, v.
abs/2301.00234, 2023.
DORR, B. et al. Machine translation evaluation and optimization. Em:
Handbook of Natural Language Processing and Machine Translation:
DARPA Global Autonomous Language Exploitation. [s.l.] Springer,
2011. p. 745–843.
DU BOIS, J. W. et al. Santa Barbara
corpus of spoken American English.
Parts 1–4. Philadelphia: Linguistic Data
Consortium, 2000--2005.
DU BOIS, J. W. et al. Discourse transcription. Santa
Barbara: Department of Linguistics, University of California, 1992. v. 4
DURAN, M. S. et al. The Dawn of the Porttinari Multigenre
Treebank: Introducing its Journalistic Portion. Anais do XIV
Simpósio Brasileiro de Tecnologia da Informação e da
Linguagem Humana. Anais...Porto Alegre, RS, Brasil:
SBC, 2023.
DURAN, M. S.; ALUÍSIO, S. M. Propbank-Br: a
Brazilian Treebank Annotated with Semantic Role Labels.
Proceedings of the 8th International Conference on Language Resources
and Evaluation - LREC. Anais...2012.
EBDEN, P.; SPROAT, R. The Kestrel TTS text
normalization system. Natural Language Engineering,
v. 21, p. 333–353, maio 2014.
EIJCK, J. VAN; UNGER, C. Computational Semantics with Functional
Programming. [s.l.] Cambridge University Press, 2010.
EISENSTEIN, J. Introduction to Natural Language
Processing. [s.l.] The MIT Press, 2019.
EKMAN, P. An
argument for basic emotions. Cognition and Emotion,
v. 6, n. 3-4, p. 169–200, 1992.
EL AYADI, M.; KAMEL, M. S.; KARRAY, F. Survey on speech emotion
recognition: Features, classification schemes, and databases.
Pattern recognition, v. 44, n. 3, p. 572–587, 2011.
ELLIOT, N.; KLOBUCAR, A. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 16–35.
EMPOLI, G. DA. Os engenheiros do caos: Como as fake news, as
teorias da conspiração e os algoritmos estão sendo utilizados para
disseminar ódio, medo e influenciar eleições. [s.l.] Vestígio
Editora, 2019.
ESTRELLA, P.; POPESCU-BELIS, A.; KING, M. The
FEMTI guidelines for contextual MT evaluation:
principles and resources. Em: WALTER DAELEMANS; VÉRONIQUE HOSTE
(Eds.). Evaluation of translation
Technology. Linguistica Antverpiensia
new Series- themes em Translation
Studies. [s.l: s.n.].
ETZIONI, O. et al. Unsupervised named-entity extraction from the web: An
experimental study. Artificial intelligence, v. 165, n.
1, p. 91–134, 2005.
FADER, A.; SODERLAND, S.; ETZIONI, O. Identifying Relations for
Open Information Extraction. Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing.
Anais...Edinburgh, Scotland, UK.: Association for
Computational Linguistics, jul. 2011. Disponível em: <https://www.aclweb.org/anthology/D11-1142>
FAN, A.; LEWIS, M.; DAUPHIN, Y. Hierarchical Neural Story
Generation. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1082>
FARIAS, D. S. et al. Opinion-Meter: A Framework for Aspect-Based
Sentiment Analysis. Proceedings of the 22nd Brazilian Symposium
on Multimedia and the Web. Anais...2016.
FARZINDAR, A.; INKPEN, D. Natural Language Processing for Social
Media. Second edition ed. [s.l.] Morgan; Claypool, 2018.
FAYEK, H. M. Speech Processing for Machine Learning: Filter
banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s
In-Between., 2016. Disponível em: <https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html>
FEDERICO, M. et al. Assessing the Impact of Translation Errors
on Machine Translation Quality with Mixed-effects Models.
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Anais...Doha,
Qatar: Association for Computational Linguistics, out. 2014. Disponível
em: <https://aclanthology.org/D14-1172>
FEIJÓ, D. DE V.; MOREIRA, V. P. Mono vs Multilingual
Transformer-based Models: a Comparison across Several Language
Tasks. CoRR, v. abs/2007.09757, 2020.
FELLBAUM, C. (EDITOR). WordNet: An electronic lexical
database. [s.l.] The MIT press, 1998.
FELTRIM, V. D. et al. A Construção de uma Ferramenta de Auxílio
à Escrita de Resumos Acadêmicos em Português. Anais do Encontro
Nacional de Inteligência Artificial (ENIA’2003).
Anais...SBC, 2003.
FENNELLY, O. et al. Use of standardized terminologies in clinical
practice: A scoping review. Int J Med Inform, v. 149,
p. 104431, fev. 2021.
FERNANDES, E. R.; SANTOS, C. N. DOS; MILIDIÚ, R. L. Latent trees for
coreference resolution. Computational Linguistics,
2014.
FERRADEIRA, J. E. DE S. Resolução de anáfora
pronominal. mathesis—[s.l.] Universidade Nova de Lisboa;
Dissertação de Mestrado, Universidade Nova de Lisboa, 1993.
FERRÁNDEZ, Ó. et al. Tackling HAREM’s portuguese named entity
recognition task with spanish resources. Reconhecimento de
entidades mencionadas em português:
Documentação e actas do HAREM, a primeira
avaliação conjunta na área.
Linguateca (http://www. linguateca.
pt/aval_conjunta/LivroHAREM/Cap11-SantosCardoso2007-Ferrandezetal.
pdf), 2007.
FERREIRA, A. C. et al. Padrões linguísticos para detecção de ironia em
múltiplos idiomas. Revista Gestão & Tecnologia,
2017.
FERREIRA MELLO, R. et al. Towards automated content analysis of
rhetorical structure of written essays using sequential
content-independent features in Portuguese. (A. F. Wise, R.
Martinez-Maldonado, I. Hilliger, Eds.)LAK22 Conference
Proceedings. Anais...United States of America:
Association for Computing Machinery (ACM), 2022.
FERREIRA, R. et al. Towards Automatic Content Analysis of Rhetorical
Structure in Brazilian College Entrance Essays. Em: [s.l:
s.n.]. p. 162–167.
FILLMORE, C. J. et al. Frame semantics and the nature of
language. Annals of the New York Academy of Sciences:
Conference on the origin and development of language and speech.
Anais...New York, 1976.
FINATTO, M. J. B.; ESTEVES, F. F.; VILLAR, G. S. Construindo
uma terminologia de raiz: textos legislativos sob exploração
terminológica. Revista Platô, v. 5, n. 9, 2022.
FINE, K. Truthmaker semantics. A Companion to the Philosophy of
Language, p. 556–577, 2017.
FIRTH, J. R. The technique of semantics. Transactions of the
philological society, v. 34, n. 1, p. 36–73, a1957.
FIRTH, J. R. A synopsis of linguistic theory 1930–1955.
[s.l.] Blackwell, 1957b. p. 1–32
FLEISS, J. L. Measuring
nominal scale agreement among many raters. Psychological
Bulletin, v. 76, n. 5, p. 378–382, 1971.
FLORES, F. N.; MOREIRA, V. P.; HEUSER, C. A. Assessing the
impact of stemming accuracy on information retrieval.
International Conference on Computational Processing of the Portuguese
Language. Anais...Springer, 2010.
FLORIAN, R. et al. Named entity recognition through classifier
combination. Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003. Anais...2003.
FONSECA, E. B. Resolução de
correferências em língua portuguesa: pessoa,
local e organização. Dissertação de
Mestrado, Pontifı́cia Universidade Católica do
Rio Grande do Sul, 2014.
FONSECA, E. B. et al. Summ-it++: an enriched version of the
summ-it corpus. Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16).
Anais...2016.
FONSECA, E. B. Resolução
de correferência nominal usando semântica em
língua portuguesa. tese de doutorado—[s.l.] Pontifícia
Universidade Católica do Rio Grande do Sul; Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2018.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Dealing With Imbalanced
Datasets For Coreference Resolution. Proceedings of The
Twenty-Eighth International Flairs Conference.
Anais...2015.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Adapting an Entity Centric
Model for Portuguese Coreference Resolution. Portorož,
Slovenia, b2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. CORP: Coreference
Resolution for Portuguese., a2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. A. Coreference Resolution In
Portuguese: Detecting Person, Location And Organization. Journal
of the Brazilian Computational Intelligence Society, v. 12, n.
2, p. 86–97, 2014.
FONSECA, E. R. et al. Automatically Grading Brazilian Student
Essays. (A. Villavicencio et al., Eds.)Computational Processing
of the Portuguese Language. Anais...Springer
International Publishing, 2018.
FONSECA, E. R.; ROSA, J. L. G. Mac-Morpho Revisited: Towards
Robust Part-of-Speech Tagging. Proceedings of the 9th
Brazilian Symposium in Information and Human Language
Technology. Anais...2013. Disponível em: <https://aclanthology.org/W13-4811>
FONSECA, E. R.; ROSA, J. L.; ALUÍSIO, S. M. Evaluating word
embeddings and a revised corpus for part-of-speech tagging in
Portuguese. Journal of the Brazilian Computer
Society, v. 21, n. 1, p. 32–38, fev. 2015.
FONSECA, E.; VANIN, A.; VIEIRA, R. Mention clustering to improve
portuguese semantic coreference resolution. International
Conference on Applications of Natural Language to Information Systems.
Anais...Springer, 2018.
FONT LLITJÓS, A.; CARBONELL, J. G.; LAVIE, A. A framework for
interactive and automatic refinement of transfer-based machine
translation. Proceedings of the 10th EAMT Conference: Practical
applications of machine translation. Anais...Budapest,
Hungary: European Association for Machine Translation, 2005. Disponível
em: <https://aclanthology.org/2005.eamt-1.13>
FORCADA, M. L.; ÑECO, R. P. Recursive hetero-associative
memories for translation. International Work-Conference on
Artificial Neural Networks. Anais...Springer, 1997.
FORTUNA, P. et al. A Hierarchically-Labeled
Portuguese Hate Speech Dataset. Proceedings of the
Third Workshop on Abusive Language Online.
Anais...2019.
FORTUNA, P.; NUNES, S. A survey on automatic detection of hate speech in
text. ACM Computing Surveys (CSUR), 2018.
FREITAS, C. et al. Relation detection between named entities:
report of a shared task. Proceedings of the Workshop on
Semantic Evaluations: Recent Achievements and Future Directions.
Anais...Boulder, Colorado: 2009.
FREITAS, C. et al. Second HAREM: Advancing the
State of the Art of Named Entity Recognition in Portuguese.
Proceedings of the International Conference on Language Resources and
Evaluation. Anais...Valletta, Malta: 2010. Disponível
em: <http://www.lrec-conf.org/proceedings/lrec2010/summaries/412.html>
FREITAS, C. et al. Vampiro que brilha... rá! Desafios na
anotação de opinião em um corpus de resenhas de livros.
Proceedings of XI Encontro de Linguística de Corpus.
Anais...2012.
FREITAS, C. Sobre a construção de um léxico da afetividade para o
processamento computacional do português. Revista Brasileira de
Linguística Aplicada, 2013.
FREITAS, C. et al. Tagsets and Datasets: Some Experiments Based
on Portuguese Language. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2018.
FREITAS, C. Linguística Computacional. [s.l.] Editora
Parábola, 2022.
FREITAS, C.; ROCHA, P.; BICK, E. Floresta sintá (c)
tica: bigger, thicker and easier. International Conference on
Computational Processing of the Portuguese Language.
Anais...Springer, 2008.
FREITAS, C.; SANTOS, D. Gender
Depiction in Portuguese: Distant
reading Brazilian and Portuguese
literature. 2nd Annual Conference of
Computational Literary Studies.
Anais...2023. Disponível em: <https://www.linguateca.pt/Diana/download/FreitasSantos2023-2ndCCLS.pdf>
FREITAS, C.; SOUZA, E. Sujeito oculto
às claras: uma abordagem descritivo-computacional / Omitted subjects
revealed: a quantitative-descriptive approach. REVISTA DE
ESTUDOS DA LINGUAGEM, v. 29, n. 2, p. 1033–1058, 2021.
FREITAS, L. A. DE et al. Pathways for irony detection in
tweets. Proceedings of the Symposium on Applied Computing
(SAC). Anais...2014.
FREITAS, L. A. DE. Feature-level sentiment analysis applied to
brazilian portuguese reviews. tese de doutorado—[s.l.]
Pontifícia Universidade Católica do Rio Grande do Sul, 2015.
FREITAS, L. A. DE; SANTOS, L. DOS; DEON, D. Padrões linguísticos para
detecção de ironia em múltiplos idiomas. Revista Eletrônica de
Iniciação Científica em Computação, 2020.
FULLER, C. et al. An Analysis of Text-Based Deception Detection
Tools. Proceedings of the Twelfth Americas Conference on
Information Systems. Anais...2006.
FYFE, S. et al. Apophenia, theory of mind and schizotypy: perceiving
meaning and intentionality in randomness. Cortex, v.
44, n. 10, p. 1316–1325, 2008.
GAMALLO, P.; GARCIA, M. Multilingual open information
extraction. (F. Pereira et al., Eds.)Portuguese Conference on
Artificial Intelligence. Anais...Cham: Springer;
Springer International Publishing, 2015. Disponível em: <https://doi.org/10.1007/978-3-319-23485-4_72>
GAMALLO, P.; GARCIA, M.; FERNÁNDEZ-LANZA, S. Dependency-based
open information extraction. Proceedings of the joint workshop
on unsupervised and semi-supervised learning in NLP.
Anais...: ROBUS-UNSUP ’12.Stroudsburg, PA, USA:
Association for Computational Linguistics; Association for Computational
Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2389961.2389963>
GAMON, M. et al. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 251–266.
GAO, T.; YAO, X.; CHEN, D. SimCSE: Simple Contrastive Learning
of Sentence Embeddings. (M.-F. Moens et al., Eds.)Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.552>
GARCIA, M.; GAMALLO, P. An Entity-Centric Coreference Resolution
System for Person Entities with Rich Linguistic Information.
Proceedings of 25th International Conference on Computational
Linguistics. Anais...Dublin, Ireland: 2014. Disponível
em: <http://aclweb.org/anthology/C/C14/C14-1070.pdf>
GAUY, M. M.; FINGER, M. Pretrained audio neural networks for
Speech emotion recognition in Portuguese. Proceedings of the
Workshop on Automatic Speech Recognition for Spontaneous and Prepared
Speech & Speech Emotion Recognition in Portuguese co-located with
15th edition of the International Conference on the Computational
Processing of Portuguese (PROPOR 2022). Anais...2022.
GEVA, M.; GUPTA, A.; BERANT, J. Injecting Numerical Reasoning
Skills into Language Models. (D. Jurafsky et al.,
Eds.)Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Anais...Association for Computational
Linguistics, 2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.89>
GHANEM, B. et al. IDAT at FIRE2019: Overview of the Track on
Irony Detection in Arabic Tweets. Proceedings of the 11th Forum
for Information Retrieval Evaluation. Anais...2019.
GHOSH, A. et al. SemEval-2015 Task 11:
Sentiment Analysis of Figurative Language in
Twitter. Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval
2015). Anais...2015.
GIBBS, R. W.; COLSTON, H. L. The Risks and Rewards of Ironic
Communication. Say not to say: new perspectives on
miscommunication. Anais...2001. Disponível em: <https://api.semanticscholar.org/CorpusID:12510370>
GLAUBER, R. et al. Challenges of an Annotation Task for Open
Information Extraction in Portuguese. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2018.
GLAUBER, R.; CLARO, D. B. A systematic mapping
study on open information extraction. Expert Systems with
Applications, v. 112, p. 372–387, 2018.
GLAUBER, R.; CLARO, D. B.; OLIVEIRA, L. S. Dependency Parser on
Open Information Extraction for Portuguese Texts - DptOIE and
DependentIE on IberLEF. Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the
Spanish Society for Natural Language Processing (SEPLN 2019).
Anais...http://ceur-ws.org/Vol-2421/: CEUR Workshop
Proceedings, 2019.
GLAUBER, R.; CLARO, D. B.; SENA, C. F. DE L. Towards a Pragmatic
Open Information Extraction for Portuguese Text - ICEIS17, InferPortOIE
and PragmaticOIE on IberLEF. Proceedings of the Iberian
Languages Evaluation Forum (IberLEF 2019) co-located with 35th
Conference of the Spanish Society for Natural Language Processing (SEPLN
2019). Anais...http://ceur-ws.org/Vol-2421/: CEUR
Workshop Proceedings, 2019.
GOLUB, G. H.; REINSCH, C. Singular Value Decomposition and Least
Squares Solutions. [s.l.] Numer. Math 14, 1970. p. 403–420
GOMES, J. R. S. et al. Deep Learning Brasil at ABSAPT 2022:
Portuguese Transformer Ensemble Approaches. Proceedings of the
Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the
Conference of the Spanish Society for Natural Language Processing
(SEPLN 2022), A Coruña, Spain,
September 20, 2022. Anais...2022.
GONÇALO OLIVEIRA, H. et al. Avaliação
à medida no Segundo HAREM. (C. Mota, D. Santos,
Eds.)Desafios na avaliação conjunta do
reconhecimento de entidades mencionadas: O Segundo HAREM.
Anais...Linguateca, 2008.
GONÇALO OLIVEIRA, H. Beyond the automatic construction of a
lexical ontology for Portuguese: resources developed in the
scope of Onto.PT. Proceedings of Workshop on Tools
and Resources for Automatically Processing Portuguese and Spanish.
Anais...: TorPorEsp.São Carlos, SP, Brasil: BDBComp,
2014. Disponível em: <http://www.lbd.dcc.ufmg.br/colecoes/torporesp/2014/004.pdf>
GONÇALO OLIVEIRA, H.; GOMES, P. ECO and
Onto-PT: a flexible approach for creating a Portuguese Wordnet
automatically. Language Resources and Evaluation,
v. 48, n. 2, p. 373–393, 2014.
GONÇALVES, M. et al. Avaliação de recursos
computacionais para o português. Linguamática, v.
12, n. 2, p. 51–68, 2020.
GONÇALVES, S. C. L. Projeto ALIP (Amostra Linguística do
Interior Paulista) e banco de dados Iboruna: 10 anos de contribuição com
a descrição do português brasileiro. Revista Estudos
Linguísticos, v. 48, n. 1, p. 276–297, dez. 2019.
GONÇALVES, T. et al. Clinical Screening Prediction in the Portuguese
National Health Service: Data Analysis, Machine Learning Models,
Explainability and Meta-Evaluation. Future Internet, v.
15, n. 1, p. 26, 2023.
GONG, Z. et al. Continual Pre-training of Language Models for
Math Problem Understanding with Syntax-Aware Memory Network.
(S. Muresan, P. Nakov, A. Villavicencio, Eds.)Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022. Anais...Association for Computational
Linguistics, 2022. Disponível em: <https://doi.org/10.18653/v1/2022.acl-long.408>
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep
Learning. [s.l.] MIT Press, 2016. v. 1
GRAHAM, Y. et al. Is all that Glitters in Machine Translation
Quality Estimation really Gold? Proceedings of
COLING 2016: Technical Papers.
Anais...Osaka, Japan: The COLING 2016 Organizing
Committee, dez. 2016. Disponível em: <https://www.aclweb.org/anthology/C16-1294>
GRICE, H. P. Logic and Conversation. Em: Syntax and Semantics:
Vol. 3: Speech Acts. [s.l.] Academic Press, 1975.
GRIES, S. C. Estatística
com R para a Linguística. [s.l.] FALE/ UFMG, 2019.
GRIS, L. R. S. et al. Bringing NURC/SP to digital
life: the role of open-source automatic speech recognition
models. Anais do XIX Encontro Nacional de Inteligência
Artificial e Computacional. Anais...Porto Alegre, RS,
Brasil: SBC, 2022. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/22793>
GRIS, L. R. S. et al. Evaluating OpenAI’s Whisper ASR for
Punctuation Prediction and Topic Modeling of life histories of the
Museum of the Person., 2023. Disponível em: <https://arxiv.org/abs/2305.14580>
GRISHMAN, R.; SUNDHEIM, B. Message
Understanding Conference- 6: A Brief
History. COLING 1996 Volume 1: The 16th
International Conference on Computational Linguistics.
Anais...1996. Disponível em: <https://aclanthology.org/C96-1079>
GROSZ, B. J.; JOSHI, A. K.; WEINSTEIN, S. Centering: A framework for
modelling the local coherence of discourse. IRCS Technical
Reports Series, 1995.
GROSZ, B. J.; SIDNER, C. L. Attention, intentions, and the structure of
discourse. Computational linguistics, v. 12, n. 3, p.
175–204, 1986.
GRUBER, A.; WEISS, Y.; ROSEN-ZVI, M. Hidden Topic Markov
Models. Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics. Anais...:
Proceedings of Machine Learning Research.San Juan, Puerto Rico: PMLR,
mar. 2007.
GRUBER, T. R. Siri, A Virtual Personal Assistant-Bringing
Intelligence to the Interface. Semantic Technologies
Conference. Anais...2009.
GUARINO, N.; GUIZZARDI, G. We need to Discuss the
Relationship: Revisiting Relationships as Modeling
Constructs. Proceedings of the 27th International
Conference on Advanced Information Systems Engineering (CAISE
2015). Anais...Springer-Verlag,
2015.
GUIMARÃES, S. S. et al. Characterizing Toxicity on Facebook
Comments in Brazil. Proceedings of the Brazilian Symposium on
Multimedia and the Web. Anais...2020.
GULATI, A. et al. Conformer:
Convolution-augmented Transformer for Speech Recognition.
CoRR, v. abs/2005.08100, 2020.
GULDEN, C. et al. Extractive
summarization of clinical trial descriptions. International
Journal of Medical Informatics, v. 129, p. 114–121, 2019.
GUMIEL, Y. B. et al. Temporal
Relation Extraction in Clinical Texts: A Systematic Review. v. 54,
n. 7, set. 2021.
GURURANGAN, S. et al. Annotation Artifacts in Natural Language
Inference Data. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers).
Anais...New Orleans, Louisiana: Association for
Computational Linguistics, jun. 2018. Disponível em: <https://aclanthology.org/N18-2017>
GURURANGAN, S. et al. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.
Anais...Online: Association for Computational
Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.740>
HABIBI, M. et al. Deep learning with word embeddings improves
biomedical named entity recognition.
Bioinformatics, v. 33, n. 14, p. i37–i48, 2017.
HAENDCHEN FILHO, A. et al. An approach to evaluate adherence to
the theme and the argumentative structure of essays.
International Conference on Knowledge-Based Intelligent Information
& Engineering Systems. Anais...2018.
HAENDCHEN FILHO, A. et al. Imbalanced Learning Techniques for Improving
the Performance of Statistical Models in Automated Essay Scoring.
Procedia Computer Science, v. 159, p. 764–773, jan.
2019.
HAKUTA, K. Handbook of Automated Essay Evaluation: Current Applications
and New Directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.]
Routledge/Taylor & Francis Group, 2013. p. 347–353.
HALL, J. A Probabilistic
Part-of-Speech Tagger with
Suffix Probabilities. tese de
doutorado—[s.l: s.n.].
HALLIDAY, M. A. K.; MATTHIESSEN, C. M. I. M. Construing
Experience Through Meaning: A Language Based Approach to
Cognition. [s.l.] Continuum, 1999.
HAPKE, H.; HOWARD, C.; LANE, H. Natural Language Processing in
Action: Understanding, analyzing, and generating text with
Python. [s.l.] Manning, 2019.
HARRIS, Z. S. Distributional
Structure. Word, v. 10, n. 2-3, p. 146–162, 1954.
HASEGAWA, T.; SEKINE, S.; GRISHMAN, R. Discovering relations
among named entities from large corpora. Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics
(acl-04). Anais...2004.
HASSAN, H. et al. Achieving Human Parity on Automatic
Chinese to English News Translation.
arXiv preprint 1803.05567, 2018.
HAVASI, C.; SPEER, R.; ALONSO, J. ConceptNet 3: a Flexible,
Multilingual Semantic Network for Common Sense Knowledge.
Recent Advances in Natural Language Processing.
Anais...Borovets, Bulgaria: To appear, 2007.
HE, K. et al. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016. Anais...IEEE
Computer Society, 2016. Disponível em: <https://doi.org/10.1109/CVPR.2016.90>
HE, P. et al. Deberta: decoding-Enhanced Bert with Disentangled
Attention. 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. Anais...OpenReview.net, 2021. Disponível em:
<https://openreview.net/forum?id=XPZIaotutsD>
HEARST, M. A. Automatic acquisition of hyponyms from large text
corpora. Proceedings of the 14th conference on Computational
linguistics-Volume 2. Anais...Association for
Computational Linguistics, 1992.
HEE, C. V.; LEFEVER, E.; HOSTE, V.
SemEval-2018 Task 3: Irony Detection
in English Tweets. Proceedings of the 12th
International Workshop on Semantic Evaluation.
Anais...2018.
HEIKKILÄ, M. Why you shouldn’t trust AI search engines.
Disponível em: <https://www.technologyreview.com/2023/02/14/1068498/why-you-shouldnt-trust-ai-search-engines/>.
Acesso em: 9 abr. 2023.
HEIKKILÄ, M. The viral AI avatar app Lensa undressed me—without
my consent. Disponível em: <
https://www.technologyreview.com/2022/12/12/1064751/the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/>.
Acesso em: 28 ago. 2023.
HEIM, I. File Change Semantics and the Familiarity Theory of
Definiteness. Em: Formal Semantics. [s.l.]
Wiley-Blackwell, 2008. p. 223–248.
HEINRICH, T.; MARCHI, F. TeamUFPR at ABSAPT 2022:
Aspect Extraction with CRF and BERT.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma, Technische Universität
München, v. 91, n. 1, p. 31, 1991.
HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term
Memory. Neural Computation, v. 9, n. 8, p.
1735–1780, nov. 1997.
HOFFMANN, J. et al. Training
Compute-Optimal Large Language Models. CoRR, v.
abs/2203.15556, 2022.
HOFMANN, T. Probabilistic Latent Semantic Indexing.
Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’99). Anais...New York,
NY, USA: Association for Computing Machinery, 1999.
HOLTZMAN, A. et al. The Curious Case of Neural Text
Degeneration. ICLR. Anais...OpenReview.net,
2020. Disponível em: <http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20>
HORA, N. DA. Coded Bias: linguagem acessível para entender
vieses em algoritmos. Disponível em: <
https://mittechreview.com.br/coded-bias-linguagem-acessivel-para-entender-vieses-em-algoritmos/>.
Acesso em: 7 abr. 2023.
HORA, N. DA. Ética em IA: a pergunta que não estamos
fazendo. Disponível em: <https://mittechreview.com.br/etica-em-ia-a-pergunta-que-nao-estamos-fazendo/>.
Acesso em: 7 abr. 2023.
HORNIK, K.; STINCHCOMBE, M. B.; WHITE, H. Multilayer
feedforward networks are universal approximators. Neural
Networks, v. 2, n. 5, p. 359–366, 1989.
HORSMANN, T.; ZESCH, T. Assigning Fine-grained
PoS Tags based on High-precision
Coarse-grained Tagging. Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Anais...Osaka, Japan: The COLING 2016
Organizing Committee, dez. 2016. Disponível em: <https://aclanthology.org/C16-1032>
HOU, Y.; MARKERT, K.; STRUBE, M. A Rule-Based System for
Unrestricted Bridging Resolution: Recognizing Bridging Anaphora and
Finding Links to Antecedents. Proceedings of the Conference on
Empirical Methods in Natural Language Processing.
Anais...Doha, Qatar: 2014. Disponível em: <http://aclweb.org/anthology/D/D14/D14-1222.pdf>
HOULSBY, N. et al. Parameter-Efficient Transfer Learning for
NLP. (K. Chaudhuri, R. Salakhutdinov,
Eds.)Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Anais...: Proceedings of
Machine Learning Research.PMLR, 2019. Disponível em: <http://proceedings.mlr.press/v97/houlsby19a.html>
HOVY, E.; KING, M.; POPESCU-BELIS, A. An introduction to MT
evaluation. Proceedings of Machine Translation Evaluation:
Human Evaluators meet Automated Metrics. Workshop at the LREC 2002
Conference. Las Palmas, Spain. Anais...2002.
HOWARD, J.; RUDER, S. Universal Language Model Fine-tuning for
Text Classification. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <^5^>
HSU, W.-N. et al. Hubert: Self-supervised speech representation learning
by masked prediction of hidden units. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, v. 29, p. 3451–3460,
2021.
HU, E. J. et al. LoRA: Low-Rank Adaptation of Large Language
Models. The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29,
2022. Anais...OpenReview.net, 2022. Disponível em:
<https://openreview.net/forum?id=nZeVKeeFYf9>
HU, M.; LIU, B. Mining Opinion Features in Customer
Reviews. Proceedings of the 19th National Conference on
Artifical Intelligence. Anais...2004.
HUANG, J.-T.; HASEGAWA-JOHNSON, M.; SHIH, C. Unsupervised
prosodic break detection in Mandarin speech. Proc.
Speech Prosody 2008. Anais...2008.
HUANG, X.; ACERO, A.; HON, H. W. Spoken Language
Processing: A Guide to Theory, Algorithm, and System
Development. [s.l.] Prentice Hall PTR, 2001.
HUTCHINS, J. Towards a definition of example-based machine
translation., Proceedings of Second
Workshop on Example-Based
Machine Translation;
Anais...2005.
HUTCHINS, W. Machine Translation: A Concise History. Journal of
Translation Studies: Special Issue on The Teaching of Computer-aided
Translation, v. 13, p. 1–2, 2010.
HUTCHINS, W. J. Machine
translation over fifty years. Histoire, Epistemologie,
Langage, v. XXII, n. 1, p. 7–31, 2001.
IGNAT, O. et al. A PhD Student’s Perspective on Research in NLP
in the Era of Very Large Language Models., 2023. Disponível em:
<https://arxiv.org/abs/2305.12544>
ILARI, R.; GERALDI, J. W. Semântica. [s.l.] Ética,
1985.
INFOBASE. Inteligência Artificial e a perpetuação do
racismo. Disponível em: <https://infobase.com.br/inteligencia-artificial-e-a-perpetuacao-do-racismo/>.
Acesso em: 28 ago. 2023.
ITO, K. The LJ speech dataset.
https://keithito.com/LJ-Speech-Dataset/, 2017.
IVGI, M.; SHAHAM, U.; BERANT, J. Efficient Long-Text
Understanding with Short-Text Models. Transactions of the
Association for Computational Linguistics, v. 11, p. 284–299,
2023.
JACKSON, P.; MOULINIER, I. Natural Language Processing for
Online Applications – Text retrieval, extraction and
categorization. [s.l.] John Benjamins, 2002.
JAHAN, M. S.; OUSSALAH, M. A systematic review of hate speech automatic
detection using natural language processing.
Neurocomputing, 2023.
JAIN, S.; WALLACE, B. C. Attention is not Explanation.
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).
Anais...Minneapolis, Minnesota: Association for
Computational Linguistics, 2019. Disponível em: <https://aclanthology.org/N19-1357>
JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems
(TOIS), v. 20, n. 4, p. 422–446, 2002.
JEON, J. H.; LIU, Y. Semi-supervised Learning for Automatic
Prosodic Event Detection Using Co-training Algorithm.
Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP.
Anais...Suntec, Singapore: Association for
Computational Linguistics, ago. 2009. Disponível em: <https://aclanthology.org/P09-1061>
JI, Z. et al. Survey of
Hallucination in Natural Language Generation. ACM Comput.
Surv., v. 55, n. 12, mar. 2023.
JIANG, S. et al. Multi-Ontology Refined
Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic
representation model for biomedical concepts. Journal of
Biomedical Informatics, v. 111, p. 103581, 2020.
JIANG, S. et al. Irony Detection in the Portuguese Language
using BERT. Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2021) co-located with the Conference of the
Spanish Society for Natural Language Processing (SEPLN
2021), XXXVII International Conference of the Spanish
Society for Natural Language Processing., Málaga, Spain,
September, 2021. Anais...2021.
JIN, X. et al. Lifelong Pretraining: Continually Adapting
Language Models to Emerging Corpora. Proceedings of the 2022
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.
Anais...Seattle, United States: Association for
Computational Linguistics, jul. 2022. Disponível em: <https://aclanthology.org/2022.naacl-main.351>
JOHNSON, K. Acoustic and
Auditory Phonetics. [s.l.] Wiley, 2011.
JONES, K. H. et al. Toward the Development of Data Governance Standards
for Using Clinical Free-Text Data in Health Research:
Position Paper. J Med Internet Res, v. 22, n. 6, p.
e16760, jun. 2020.
JOOS, M. Description of
language design. Journal of Acoustical Society of America -
JASA, v. 22, p. 701–708, 1950.
JOSHI, M. et al. BERT for Coreference Resolution:
Baselines and Analysis. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...Hong Kong, China: Association
for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1588>
JOSHI, M. et al. SpanBERT:
Improving Pre-training by Representing and Predicting Spans.
Transactions of the Association for Computational
Linguistics, v. 8, p. 64–77, 2020.
JOYCE, J. M. Kullback-Leibler
Divergence. Em: LOVRIC, M. (Ed.). International Encyclopedia
of Statistical Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p. 720–722.
JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. 3rd. ed. USA: Prentice Hall PTR, 2023.
KAMBHATLA, N. Combining lexical, syntactic, and semantic
features with maximum entropy models for information
extraction. Proceedings of the ACL interactive poster and
demonstration sessions. Anais...2004.
KANTAYYA, S. Coded Bias. Disponível em: < https://www.codedbias.com>.
Acesso em: 7 abr. 2023.
KE, Z. et al. Continual Pre-training of Language
Models., 2023. Disponível em: <https://arxiv.org/abs/2302.03241>
KENEDY, E.; OTHERO, G. DE Á. Para conhecer sintaxe. São
Paulo: Contexto, 2018.
KHAYRALLAH, H.; KOEHN, P. On the Impact of Various Types of
Noise on Neural Machine Translation. Proceedings of the 2nd
Workshop on Neural Machine Translation and Generation.
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/W18-2709>
KIANPOUR, M.; WEN, S.-F. Timing Attacks on Machine Learning:
State of the Art. Intelligent Systems Conference.
Anais...Springer, 2020.
KILGARRIFF, A. I
Don’t Believe in Word Senses. Computers and the
Humanities, 1997.
KILGARRIFF, A. Thesauruses for Natural Language
Processing. Proceedings of Natural Language Processing and
Knowledge Engineering. Anais...2003. Disponível em:
<https://www.kilgarriff.co.uk/Publications/2003-K-Beijing-thes4NLP.pdf>
KIM, J. et al. Glow-TTS: A Generative Flow for
Text-to-Speech via Monotonic Alignment Search. arXiv preprint
arXiv:2005.11129, 2020.
KIM, J.; KONG, J.; SON, J. Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech.
International Conference on Machine Learning.
Anais...PMLR, 2021.
KIPPER, K.; DANG, H. T.; PALMER, M. Class-Based Construction of
a Verb Lexicon. Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence.
Anais...AAAI Press, 2000.
KIRSTAIN, Y.; RAM, O.; LEVY, O. Coreference Resolution without
Span Representations. Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short
Papers). Anais...2021.
KLATT, D. H. Software for a cascade/parallel formant synthesizer.
the Journal of the Acoustical Society of America, v.
67, n. 3, p. 971–995, 1980.
KLIE, J.-C. et al. The INCEpTION Platform: Machine-Assisted and
Knowledge-Oriented Interactive Annotation. Proceedings of the
27th International Conference on Computational Linguistics: System
Demonstrations. Anais...Santa Fe, USA: Association for
Computational Linguistics, 2018. Disponível em: <http://tubiblio.ulb.tu-darmstadt.de/106270/>
KNUTH, D. E. Fundamental Algorithms. The Art of Computer
Programming. 3. ed. [s.l.] Addison-Wesley, 1997. v. 1
KOCH, I. G. V. O texto e a construção do sentido. 7.
ed. Campinas, SP: Contexto, 2003.
KOCH, I. G. V.; TRAVAGLIA, L. Texto e
coerência. 13. ed. [s.l.] Cortez, 2012.
KOEHN, P. et al. Moses: Open Source Toolkit for
Statistical Machine Translation. Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions.
Anais...Prague, Czech Republic: Association for
Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/P07-2045>
KOEHN, P. Statistical Machine
Translation. [s.l.] Cambridge University Press, 2009.
KOEHN, P. Neural
Machine Translation. [s.l.] Cambridge University Press,
2020.
KOEHN, P.; OCH, F. J.; MARCU, D. Statistical phrase-based
translation. Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology - NAACL ’03.
Anais...Association for Computational Linguistics,
2003. Disponível em: <http://dx.doi.org/10.3115/1073445.1073462>
KOIZUMI, Y. et al. Miipher: A Robust Speech Restoration Model
Integrating Self-Supervised Speech and Text Representations.
arXiv preprint arXiv:2303.01664, b2023.
KOIZUMI, Y. et al. LibriTTS-R: A Restored Multi-Speaker
Text-to-Speech Corpus. arXiv preprint arXiv:2305.18802,
a2023.
KOJIMA, T. et al. Large Language Models are Zero-Shot
Reasoners. NeurIPS. Anais...2022. Disponível
em: <http://papers.nips.cc/paper\_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html>
KOLECK, T. A. et al. Natural language processing of symptoms documented
in free-text narratives of electronic health records: a systematic
review. J Am Med Inform Assoc, v. 26, n. 4, p. 364–379,
abr. 2019.
KONSTANTINOVA, N. Review of relation extraction methods: What is
new out there? Analysis of Images, Social Networks and Texts:
Third International Conference, AIST 2014, Yekaterinburg, Russia, April
10-12, 2014, Revised Selected Papers 3.
Anais...Springer, 2014.
KRINGS, H. P. Repairing Texts:
Empirical Investigations of Machine Translation Post-editing
Processes. [s.l.] Kent State University Press, 2001.
KRIPPENDORFF, K. Estimating the
Reliability, Systematic Error and Random Error of Interval Data.
Educational and Psychological Measurement, v. 30, n. 1,
p. 61–70, 1970.
KRUSE, J. S.; BARBOSA, P. A. Alinha-PB: a
phonetic aligner for Brazilian Portuguese.
Journal of Communication and Information Systems, v.
36, n. 1, p. 192–199, dez. 2021.
KUDO, T. Subword Regularization: Improving Neural Network
Translation Models with Multiple Subword Candidates.
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1007>
KUMAR, D. et al. Understanding the Behaviors of Toxic Accounts
on Reddit. Proceedings of the ACM Web Conference 2023.
Anais...2023.
KUMAWAT, D.; JAIN, V. POS Tagging Approaches: A Comparison.
International Journal of Computer Applications, v. 118,
n. 6, p. 32–38, maio 2015.
KUO, Y. et al. Community-Based Game Design: Experiments on
Social Games for Commonsense Data Collection. Proceedings of
the ACM SIGKDD Workshop on Human Computation. Anais...:
HCOMP ’09.New York, NY, USA: Association for Computing Machinery, 2009.
Disponível em: <https://doi.org/10.1145/1600150.1600154>
KUZI, S.; SHTOK, A.; KURLAND, O. Query expansion using word
embeddings. Proceedings of the 25th ACM international on
conference on information and knowledge management.
Anais...2016.
KYLE, K. K. J. F. S.; JOSE, K. A. C. Y. B.; SOTELO, S. M.
Char2wav: End-to-end speech synthesis. International
Conference on Learning Representations, workshop.
Anais...2017.
LAN, Z. et al. ALBERT: A Lite
BERT for Self-supervised Learning of Language
Representations. 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. Anais...OpenReview.net, 2020. Disponível
em: <https://openreview.net/forum?id=H1eA7AEtvS>
LÄUBLI, S. et al. A set of recommendations for assessing human–machine
parity in language translation. Journal of Artificial
Intelligence Research, v. 67, p. 653–672, 2020.
LÄUBLI, S.; SENNRICH, R.; VOLK, M. Has Machine Translation
Achieved Human Parity? A Case for Document-level
Evaluation. Proceedings of EMNLP.
Anais...Brussels, Belgium: 2018.
LEACOCK, C. et al. Automated Grammatical Error Detection for
Language Learners. [s.l.] Morgan; Claypool Publishers, 2010.
LEAL, S. E. et al. NILC-Metrix: assessing the
complexity of written and spoken language in Brazilian Portuguese.
CoRR, v. abs/2201.03445, 2021.
LÉCHELLE, W.; GOTTI, F.; LANGLAIS, P. WiRe57: A Fine-Grained Benchmark
for Open Information Extraction. arXiv preprint
arXiv:1809.08962, 2018.
LEE, H. et al. Stanford’s multi-pass sieve coreference
resolution system at the CoNLL-2011 shared task. Proceedings of
the Fifteenth Conference on Computational Natural Language Learning:
Shared Task. Anais...2011.
LEE, H. et al. Deterministic coreference resolution based on
entity-centric, precision-ranked rules. Computational
Linguistics, v. 39, n. 4, p. 885–916, 2013.
LEE, J. et al. BioBERT: a
pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, v. 36, n. 4, p.
1234–1240, set. 2019.
LEE, K. et al. End-to-end neural coreference resolution. arXiv
preprint arXiv:1707.07045, 2017.
LEE, S. et al. A Survey
on Evaluation Metrics for Machine Translation.
Mathematics, v. 11, n. 4, 2023.
LEHNERT, W.; SUNDHEIM, B. A performance evaluation of text-analysis
technologies. AI magazine, v. 12, n. 3, p. 81–81, 1991.
LEITE, H. et al. WRITEME: uma Ferramenta de Auxílio
à Escrita de READMEs Baseada em Dados Abertos.
Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias
Abertas. Anais...Porto Alegre, RS, Brasil: SBC, 2020.
LEITNER, E.; REHM, G.; SCHNEIDER, J. M. Fine-Grained Named
Entity Recognition in Legal Documents. (M. Acosta et al.,
Eds.)Semantic Systems. The Power of AI and Knowledge Graphs
- 15th International Conference. Anais...2019.
LENAT, D. B.; GUHA, R. V. Building large knowledge-based
systems: representation and inference in the Cyc project.
[s.l.] Addison-Wesley, 1989.
LESK, M. The seven ages of information retrieval.,
1995. Disponível em: <https://archive.ifla.org/VI/5/op/udtop5/udt-op5.pdf>
LESTER, B.; AL-RFOU, R.; CONSTANT, N. The Power of Scale for
Parameter-Efficient Prompt Tuning. (M.-F. Moens et al.,
Eds.)Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.243>
LEWIS, M. et al. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. (D. Jurafsky et al.,
Eds.)Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Anais...Association for Computational
Linguistics, a2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.703>
LEWIS, P. S. H. et al. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. (H. Larochelle et
al., Eds.)Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Anais...b2020. Disponível
em: <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>
LGPD. Lei Geral de Proteção de Dados Pessoais (LGPD).
Disponível em: <https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm>.
Acesso em: 9 abr. 2023.
LI, J. et al. Molweni: A challenge multiparty dialogues-based machine
reading comprehension dataset with discourse structure. arXiv
preprint arXiv:2004.05080, 2020.
LI, P. et al. Making AI Less "Thirsty": Uncovering and Addressing the
Secret Water Footprint of AI Models. arXiv preprint
arXiv:2304.03271, a2023.
LI, Q.; JI, H. Incremental joint extraction of entity mentions
and relations. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...2014.
LI, R. et al. StarCoder: may the
source be with you! CoRR, v. abs/2305.06161, b2023.
LI, W. W. et al. BERT Is Not The Count: Learning to
Match Mathematical Statements with Proofs. (A. Vlachos, I.
Augenstein, Eds.)Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics,
EACL 2023, Dubrovnik, Croatia, May 2-6, 2023.
Anais...Association for Computational Linguistics,
c2023. Disponível em: <https://aclanthology.org/2023.eacl-main.260>
LI, X. L.; LIANG, P. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. (C. Zong et al., Eds.)Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021. Anais...Association
for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.353>
LIANG, X. et al. Contrastive Demonstration Tuning for
Pre-trained Language Models. (Y. Goldberg, Z. Kozareva, Y.
Zhang, Eds.)Findings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11,
2022. Anais...Association for Computational
Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.56>
LIKERT, R. A Technique for the
Measurement of Attitudes. [s.l.] Archives of Psychology,
1932.
LIMA, T. B. DE et al. Avaliação Automática de
Redação: Uma revisáo
sistemática. Revista Brasileira de
Informática na Educação,
v. 31, p. 205--221, maio 2023.
LIN, C.-H. et al. Rich prosodic
information exploration on spontaneous Mandarin
speech. 2016 10th International Symposium on Chinese Spoken
Language Processing (ISCSLP). Anais...Tianjin: 2016.
LIN, C.-H. et al. Hierarchical prosody modeling for
Mandarin spontaneous speech. The Journal of the
Acoustical Society of America, v. 145, n. 4, p. 2576–2596,
2019.
LIN, C.-Y. ROUGE: A Package for Automatic
Evaluation of Summaries. Text Summarization Branches Out.
Anais...Barcelona, Spain: Association for Computational
Linguistics, jul. 2004. Disponível em: <https://aclanthology.org/W04-1013>
LIN, J.; NOGUEIRA, R.; YATES, A. Pretrained Transformers for Text
Ranking: BERT and Beyond. arXiv preprint
arXiv:2010.06467, 2020.
LIU, B. Sentiment Analysis and Opinion Mining. Synthesis
Lectures on Human Language Technologies, 2012.
LIU, H.; SINGH, P. Commonsense Reasoning in and Over Natural
Language. (M. Gh. Negoita, R. J. Howlett, L. C. Jain,
Eds.)Knowledge-Based Intelligent Information and Engineering Systems.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.
LIU, T.; YAO, J.-G.; LIN, C.-Y. Towards improving neural named
entity recognition with gazetteers. Proceedings of the 57th
annual meeting of the association for computational linguistics.
Anais...2019.
LIU, Y. et al. RoBERTa:
A Robustly Optimized BERT Pretraining
Approach. CoRR, v. abs/1907.11692, 2019.
LIU, Y. et al. Multilingual Denoising
Pre-training for Neural Machine Translation. Trans. Assoc.
Comput. Linguistics, v. 8, p. 726–742, 2020.
LIU, Z. et al. De-identification of clinical notes via recurrent neural
network and conditional random field. J Biomed Inform,
v. 75S, p. S34–S42, jun. 2017.
LIU, Z. et al. A Robustly Optimized BERT Pre-Training Approach
with Post-Training. Chinese Computational Linguistics: 20th
China National Conference, CCL 2021, Hohhot, China, August 13–15, 2021,
Proceedings. Anais...Berlin, Heidelberg:
Springer-Verlag, 2021. Disponível em: <https://doi.org/10.1007/978-3-030-84186-7_31>
LO, C. YiSi - a Unified Semantic MT Quality
Evaluation and Estimation Metric for Languages with Different Levels of
Available Resources. Proceedings of the Fourth Conference on
Machine Translation, WMT 2019, Florence, Italy, August 1-2,
2019 - Volume 2: Shared Task Papers, Day 1.
Anais...2019. Disponível em: <https://doi.org/10.18653/v1/w19-5358>
LO, C.; WU, D. MEANT: An inexpensive,
high-accuracy, semi-automatic metric for evaluating translation utility
based on semantic roles. The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon,
USA. Anais...2011. Disponível em: <https://aclanthology.org/P11-1023/>
LO, S. L. et al. Multilingual Sentiment Analysis: From Formal to
Informal and Scarce Resource Languages. Artificial Intelligence
Review, 2017.
LOMMEL, A.; MELBY, A. Tutorial:
MQM-DQF: A Good Marriage (Translation Quality
for the 21st Century). Proceedings of the 13th Conference of
the Association for Machine Translation in the Americas
(Volume 2: User Track). Anais...Boston, MA: Association
for Machine Translation in the Americas, mar. 2018. Disponível em:
<https://aclanthology.org/W18-1925>
LOPE, J.; GRAÑA, M. An ongoing review of speech emotion recognition.
Neurocomputing, 2023.
LOPES, L. et al. PortiLexicon-UD: a Portuguese Lexical Resource
according to Universal Dependencies Model. Proceedings of the
Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.715>
LOPES, L. et al. Disambiguation of Universal Dependencies
Part-of-Speech Tags of Closed Class Words in Portuguese. (A.
Britto, K. V. Delgado, Eds.)Proceedings of the 12th Brazilian Conference
on Intelligent Systems (BRACIS). Anais...2023.
LOUIS, A.; HIGGINS, D. Off-topic essay detection using short
prompt texts. Proceedings of the NAACL
HLT 2010 Fifth Workshop on Innovative Use of
NLP for Building Educational Applications.
Anais...Los Angeles, California: Association for
Computational Linguistics, jun. 2010.
LOVINS, J. B. Development of a stemming algorithm. Mech. Transl.
Comput. Linguistics, v. 11, n. 1-2, p. 22–31, 1968.
LUCY, L.; BAMMAN, D. Gender and Representation Bias in
GPT-3 Generated Stories. Proceedings of the Third
Workshop on Narrative Understanding. Anais...Virtual:
Association for Computational Linguistics, jun. 2021. Disponível em:
<https://aclanthology.org/2021.nuse-1.5>
LUDUSAN, B.; SYNNAEVE, G.; DUPOUX, E. Prosodic boundary
information helps unsupervised word segmentation. Proceedings
of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Anais...2015.
LUO, X. On Coreference Resolution Performance Metrics.
Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Anais...Vancouver, Canada: 2005.
LUONG, T.; PHAM, H.; MANNING, C. D. Effective Approaches to
Attention-based Neural Machine Translation. (L. Màrquez et al.,
Eds.)Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015. Anais...The Association for
Computational Linguistics, 2015. Disponível em: <https://doi.org/10.18653/v1/d15-1166>
LYONS, J. Semantics: Volume 2. [s.l.] Cambridge
university press, 1977. v. 2
MA, Q. et al. Blend: a Novel Combined MT Metric
Based on Direct Assessment - CASICT-DCU submission to
WMT17 Metrics Task. Proceedings of the Second
Conference on Machine Translation, WMT 2017, Copenhagen,
Denmark, September 7-8, 2017. Anais...2017. Disponível
em: <https://doi.org/10.18653/v1/w17-4768>
MACDONALD, C.; TONELLOTTO, N. Declarative Experimentation in
Information Retrieval using PyTerrier. Proceedings of ICTIR
2020. Anais...2020.
MACHADO, A. A. A. et al. Personalitatem Lexicon: um léxico em
português brasileiro para mineração de traços de personalidade em
textos. Proceedings of the Brazilian Symposium on Computers in
Education. Anais...2015.
MACHADO, M. T.; PARDO, T. A. S. NILC at
ABSAPT 2022: Aspect Extraction for Portuguese.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
MACHADO, M. T.; PARDO, T. A. S.; RUIZ, E. E. S. Creating a
portuguese context sensitive lexicon for sentiment analysis.
Proceedings of the 13th international conference on computational
processing of the Portuguese Language (PROPOR).
Anais...2018.
MACIEL, A. M. B. Para
o reconhecimento da especificidade do termo jurídico.
mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2001.
MACOHIN, A.; CARNEIRO, J. V. V. Web Crawling e Web Scraping em sites de
tribunais: publicidade processual e proteção de dados pessoais nas
experiências europeia e brasileira. Em: WACHOWICZ, M. (Ed.).
Proteção de Dados Pessoais em Perspectiva: LGPD e RGPD na Ótica
do Direito Comparado. Curitiba: Gedai, UFPR, 2020.
MALENCHINI, F. M. et al. Um Benchmark para Sistemas de Extração
de Informação Aberta em Português. Proceedings of theSymposium
in Information and Human Language Technology (STIL 2019).
Anais...Salvador, Bahia: SBC, out. 2019.
MANN, W. C.; THOMPSON, S. A. Rhetorical structure theory: Toward a
functional theory of text organization. Text-interdisciplinary
Journal for the Study of Discourse, v. 8, n. 3, p. 243–281,
1988.
MANNING, C. D.; SCHÜTZE, H.; RAGHAVAN, P. Introduction to
information retrieval. [s.l.] Cambridge University Press
Cambridge, 2008.
MARCACINI, R. M.; CANDIDO JUNIOR, A.; CASANOVA, E. Overview of
the Automatic Speech Recognition for Spontaneous and Prepared Speech
& Speech Emotion Recognition in Portuguese (SE&R) Shared-tasks
at PROPOR 2022. Proceedings of the Workshop on Automatic Speech
Recognition for Spontaneous and Prepared Speech & Speech Emotion
Recognition in Portuguese co-located with 15th edition of the
International Conference on the Computational Processing of Portuguese
(PROPOR 2022). Anais...2022.
MARCU, D. From local to global coherence: A bottom-up approach
to text planning. AAAI/IAAI. Anais...Citeseer,
1997.
MARCU, D.; CARLSON, L.; WATANABE, M. The automatic translation
of discourse structures. 1st Meeting of the North American
Chapter of the Association for Computational Linguistics.
Anais...2000.
MARCUSCHI, L. A. Produção textual,
análise de gêneros e
compreensão. [s.l.] Parábola Ed.,
2008.
MARIE, B.; FUJITA, A.; RUBINO, R. Scientific
Credibility of Machine
Translation Research: A
Meta-Evaluation of 769
Papers. arXiv:2106.15195 [cs], jun.
2021.
MARINHO, J. et al. Automated Essay Scoring: An approach based on
ENEM competencies. Anais do XIX Encontro Nacional de
Inteligência Artificial e Computacional. Anais...SBC,
2022.
MARINHO, J.; ANCHIÊTA, R.; MOURA, R. Essay-BR: a Brazilian Corpus to
Automatic Essay Scoring Task. Journal of Information and Data
Management, v. 13, n. 1, p. 65–76, 2022.
MARKOV, A. A. The theory of algorithms. Trudy Matematicheskogo
Instituta Imeni VA Steklova, v. 42, p. 3–375, 1954.
MARNEFFE, M.-C. DE et al. Universal
Dependencies. Computational
Linguistics, v. 47, n. 2, p. 255–308, jun. 2021.
MARTINS, D. B. DE J. Pós-edição automática de textos traduzidos
automaticamente de inglês para português do Brasil.
Mestrado—São Carlos: Universidade Federal de São Carlos, 2014.
MARTINS, D. B. DE J.; CASELI, H. DE M. Automatic machine
translation error identification. Machine
Translation, v. 29, n. 1, p. 1–24, 2015.
MARTINS, H. Sobre
a estabilidade do significado em Wittgenstein.
Veredas, v. 4, n. 2, p. 19–42, 2000.
MARTINS, H. Três Caminhos na Filosofia da Linguagem. Em:
Introdução à Linguística. Volume III. [s.l.] Editora
Cortez, 2004.
MARTINS, R. T. et al. An interlingua aiming at communication on
the Web: How language-independent can it be?
NAACL-ANLP 2000 Workshop: Applied
Interlinguas: Practical Applications of Interlingual Approaches to
NLP. Anais...2000. Disponível em: <https://aclanthology.org/W00-0204>
MARTINS, R.; NUNES, M. DAS G. V.; HASEGAWA, R. Curupira: A
Functional Parser for Brazilian Portuguese. (N. J. Mamede et
al., Eds.)Computational Processing of the Portuguese Language.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2003.
MARTSCHAT, S.; STRUBE, M. Latent Structures for Coreference Resolution.
Transactions of the Association for Computational
Linguistics, v. 3, p. 405–418, 2015.
MATTEI, L. D. et al. ATE ABSITA@ EVALITA2020: Overview of the Aspect
Term Extraction and Aspect-based Sentiment Analysis Task.
Proceedings of the 7th Evaluation Campaign of Natural Language
Processing and Speech tools for Italian (EVALITA 2020), 2020.
MATTHEWS, B. W. Comparison of the
predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein
Structure, v. 405, n. 2, p. 442–451, 1975.
MATTHIESSEN, M. C. M. I. Applying systemic
functional linguistics in healthcare contexts. Text and
Talk, v. 33, n. 4-5, p. 437–447, 19 ago. 2013.
MATTHIESSEN, M. C. M. I.; TERUYA, K.; WU, C. Multilingual studies as a
multi-dimensional space of interconnected language studies. Em:
Meaning in context : strategies for implementing intelligent
applications of language studies. [s.l.] Continuum, 2008. p.
146–221.
MAYFIELD, E.; BLACK, A. W. Should You Fine-Tune
BERT for Automated Essay Scoring? Proceedings of
the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications. Anais...Association
for Computational Linguistics, jul. 2020.
MAZIERO, E. G. et al. A base de dados lexical e a interface web
do TeP 2.0: thesaurus eletrônico para o
Português do Brasil. Proceedings of the XIV
Brazilian Symposium on Multimedia and the Web.
Anais...Salvador, Brazil: 2008.
MAZIERO, E. G. Análise retórica com base em grande
quantidade de dados. tese de doutorado—[s.l.] Universidade de
São Paulo, 2016.
MAZIERO, E. G.; HIRST, G.; PARDO, T. A. S. Adaptation of
discourse parsing models for the Portuguese language. 2015
Brazilian Conference on Intelligent Systems (BRACIS).
Anais...IEEE, 2015.
MAZIERO, E. G.; JORGE, M. L. DEL R. C.; PARDO, T. A. S. Identifying
Multidocument Relations. NLPCS, v. 7, p. 60–69, 2010.
MAZIERO, E. G.; PARDO, T. A. S. Automatic Identification of
Multi-document Relations. Proceedings of the PROPOR 2012 PhD and
MSc/MA Dissertation Contest, p. 1–8, 2012.
MAZUMDER, M. et al. Multilingual spoken words corpus.
Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2). Anais...2021.
MCCALLUM, A.; LI, W. Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced
lexicons. Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Anais...2003.
MCCANN, B. et al. Learned in Translation: Contextualized Word
Vectors. Proceedings of the 31st International Conference on
Neural Information Processing Systems. Anais...:
NIPS’17.Red Hook, NY, USA: Curran Associates Inc., 2017.
MCCRAE, J. P. et al. English
WordNet 2019 – An Open-Source
WordNet for English.
Proceedings of the 10th Global Wordnet Conference.
Anais...Wroclaw, Poland: Global Wordnet Association,
jul. 2019. Disponível em: <https://aclanthology.org/2019.gwc-1.31>
MCDONALD, R. et al. Universal
Dependency Annotation for Multilingual Parsing.
Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-2017>
MELLO, H.; RASO, T.; ALMEIDA FERRARI, L. DE. C-ORAL–Brasil
II: Corpus de referência do português brasileiro falado
informal., no prelono prelo.
MELO, G. DE; WEIKUM, G. Towards a universal wordnet by learning
from combined evidence. Proceedings of the 18th ACM conference
on Information and knowledge management. Anais...2009.
MENDES, R. B.; OUSHIRO, L. Mapping Paulistano Portuguese: the
SP2010 Project. Proceedings of the VIIth GSCP International
Conference: Speech and Corpora. Anais...Firenze, Italy:
Fizenze University Press, 2012.
MEYER, C. F. et al. The world wide web as linguistic corpus. Em:
Corpus Analysis. [s.l.] Brill Rodopi, 2003. p. 241–254.
MIIKKULAINEN, R.; DYER, M. G. Natural Language
Processing With Modular Pdp Networks and Distributed Lexicon.
Cognitive Science, v. 15, n. 3, p. 343–399, 1991.
MIKOLOV, T. et al. Efficient Estimation of Word Representations
in Vector Space., a2013. Disponível em: <https://arxiv.org/abs/1301.3781>
MIKOLOV, T. et al. Distributed Representations of Words and
Phrases and their Compositionality. (C. J. C. Burges et al.,
Eds.)Advances in Neural Information Processing Systems.
Anais...Curran Associates, Inc., b2013. Disponível em:
<https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf>
MINSKY, M. A framework for representing knowledge. The
psychology of computer vision, 1975.
MITKOV, R. The Oxford handbook of Computational
Linguistics. [s.l.] Oxford University Press, 2003.
MITKOV, R. 21 Discourse Processing. The handbook of
computational linguistics and natural language processing, p.
599, 2010.
MIWA, M.; BANSAL, M. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Anais...Association for Computational
Linguistics, 2016.
MOHAN, S. et al. The Impact of Toxic Language on the Health of
Reddit Communities. Proceedings of the Canadian Conference on
AI. Anais...2017.
MOLLAS, I. et al. ETHOS: a multi-label hate speech
detection dataset. Complex & Intelligent Systems,
2022.
MONTEIRO, R. A. et al. Contributions to the Study of Fake News
in Portuguese: New Corpus and Automatic Detection Results.
Proceedings of the 13th international conference on computational
processing of the Portuguese Language. Anais...2018.
MONTORO, A. F. Curso de Teoria Geral do Direito - Aula 2: A
linguagem do direito: semântica, sintática e pragmática.
Disponível em: <http://www.dialdata.com.br/ilam/aula2>.
MOORE, R. K. Spoken language
processing: Piecing together the puzzle. Speech
Communication, v. 49, n. 5, p. 418–435, 2007.
MOORKENS, J. et al. Correlations of perceived
post-editing effort with measurements of actual effort.
Machine Translation, v. 29, n. 3/4, p. 267–284, 2015.
MOORKENS, J. Under pressure:
translation in times of austerity. Perspectives, v.
25, n. 3, p. 464–477, fev. 2017.
MOTA, C. R3M, uma participação minimalista no
Segundo HAREM. quot; In Cristina Mota; Diana Santos (ed)
Desafios na avaliação conjunta do
reconhecimento de entidades mencionadas: O Segundo HAREM Linguateca
2008, 2008.
MOTA, C.; SANTOS, D. (EDS.). Desafios na avaliação conjunta
do reconhecimento de entidades mencionadas: O Segundo
HAREM. [s.l.] Linguateca, 2008.
MOTA, C.; SANTOS, D.; RANCHHOD, E. Avaliação
de reconhecimento de entidades mencionadas: princı́pio de
HAREM. Avaliação
conjunta: um novo paradigma no processamento computacional da
lı́ngua portuguesa, p. 161–175, 2007.
MOTTA, E. Sentenças
Judiciais e Acessibilidade Textual e Terminológica. Domínios
de Lingu@gem, v. 15, n. 3, p. 761–813, 2021.
MOTTA, E. SENTENÇAS JUDICIAIS
E LINGUAGEM SIMPLES: um encontro possível e necessário.
mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2022.
MULLER, P. et al. Manuel d’annotation en relations de discours
du projet annodis., 2012.
MUNIZ, M. C. M. A
construção de recursos
linguístico-computacionais para o português do
Brasil: o projeto Unitex-PB. mathesis—[s.l.]
Instituto de Ciências Matemáticas e de
Computação - Universidade de São
Paulo - ICMC/USP, 2004.
NADEAU, D. Semi-Supervised
Named Entity Recognition: Learning to Recognize 100 Entity Types with
Little Supervision. tese de doutorado—[s.l.] University of
Ottawa, 2007.
NAGAO, M. A
Framework of a Mechanical
Translation between Japanese and
English by Analogy Principle.
Em: NIRENBURG, S.; SOMERS, H. L.; WILKS, Y. A. (Eds.). Readings
in Machine Translation. [s.l.] The
MIT Press, 1984.
NAMIUTI, C. O Corpus Anotado do
Português Histórico:
um avanço para as pesquisas em
Linguística
Histórica do
Português. Revista Virtual de Estudos
da Linguagem, v. 2, p. 1–9, ago. 2004.
NARDE, W. Análise de notícias falsas em rede social: uma
abordagem utilizando transferência de aprendizagem e
Transformers. https://www.monografias.ufop.br/bitstream/35400000/3122/6/MONOGRAFIA_AnáliseNotíciasFalsas.pdf,
2021.
NASAR, Z.; JAFFRY, S. W.; MALIK, M. K. Named entity recognition and
relation extraction: State-of-the-art. ACM Computing Surveys
(CSUR), v. 54, n. 1, p. 1–39, 2021.
NASCIMENTO, G. et al. Hate speech detection using brazilian
imageboards. Proceedings of the 25th Brazillian Symposium on
Multimedia and the Web. Anais...2019.
NATH, N.; LEE, S.-H.; LEE, I. NEAR: Named Entity and
Attribute Recognition of Clinical Concepts. J. of Biomedical
Informatics, v. 130, n. C, jun. 2022.
NECO, R. P.; FORCADA, M. L. Asynchronous
translations with recurrent neural nets. Proceedings of
International Conference on Neural Networks (ICNN’97).
Anais...1997.
NETO, F. A. R. et al. Team PiLN at ABSAPT 2022: Lexical and BERT
Strategies for Aspect-Based Sentiment Analysis in Portuguese.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
NEVES, M. H. DE M. Texto e gramática.
[s.l.] Contexto, 2013.
NEWMAN, N. et al. Reuters institute digital news report
2020. [s.l.] Report of the Reuters Institute for the Study of
Journalism, 2020.
NG, V.; CARDIE, C. Improving machine learning approaches to
coreference resolution. Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2002.
NGUYEN, D. B.; THEOBALD, M.; WEIKUM, G. J-NERD: joint named entity
recognition and disambiguation with rich linguistic features.
Transactions of the Association for Computational
Linguistics, v. 4, p. 215–229, 2016.
NIJKAMP, E. et al. ProGen2: Exploring the
Boundaries of Protein Language Models. CoRR, v.
abs/2206.13517, 2022.
NIVRE, J. et al. The CoNLL 2007 Shared
Task on Dependency Parsing. Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL).
Anais...Prague, Czech Republic: Association for
Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/D07-1096>
NOGUEIRA, R. et al. Document expansion by query prediction.
arXiv preprint arXiv:1904.08375, 2019.
NOORALAHZADEH, F.; ØVRELID, L. Syntactic Dependency
Representations in Neural Relation Classification. Proceedings
of the Workshop on the Relevance of Linguistic Structure in Neural
Architectures for NLP. Anais...Melbourne,
Australia: Association for Computational Linguistics, jul. 2018.
Disponível em: <https://aclanthology.org/W18-2907>
NOZAKI, J. et al. End-to-end
Speech-to-Punctuated-Text Recognition. Proc.
Interspeech 2022. Anais...2022.
NUNES, M. DAS G. V. et al. O uso de interlı́ngua para
comunicação via Internet: a
decodificação UNL-português.
Revista Tecnologia da
Informação, v. 3, n. 1, p. 49–55,
2003.
NUNES, P. LEVANTAMENTO REVELA QUE 90,5% DOS PRESOS POR
MONITORAMENTO FACIAL NO BRASIL SÃO NEGROS. Disponível em:
<
https://www.intercept.com.br/2019/11/21/presos-monitoramento-facial-brasil-negros/>.
Acesso em: 28 ago. 2023.
O’BRIEN, S. Towards predicting post-editing productivity.
Machine translation, v. 25, p. 197–215, 2011.
O’BRIEN, S. et al. Dynamic Quality
Evaluation Framework. [s.l.] TAUS
Labs Report. The Translation Automation User Society-TAUS, 2011.
O’NEIL, C. Algoritmos de Destruição em Massa. [s.l.]
Editora Rua do Sabão, 2021.
OCH, F. J.; NEY, H. The Alignment Template
Approach to Statistical Machine Translation. Computational
Linguistics, v. 30, n. 4, p. 417–449, dez. 2004.
OECD. The OECD Framework for the Classification of AI
systems. Disponível em: <
https://wp.oecd.ai/app/uploads/2022/02/Classification-2-pager-1.pdf>.
Acesso em: 28 ago. 2023.
OLIVEIRA, F. S. et al. CML-TTS: A
Multilingual Dataset for Speech
Synthesis in Low-Resource Languages. International
Conference on Text, Speech, and
Dialogue. Anais...Springer, 2023.
OLIVEIRA JR., M. NURC
Digital: um protocolo para a digitalização, anotação,
arquivamento e disseminação do material do Projeto da
Norma Urbana Linguística
Culta (NURC). CHIMERA: Revista de
Corpus de Lenguas Romances y Estudios Lingüísticos, v. 3, n. 2,
p. 149–174, set. 2016.
OLIVEIRA, L. E. S. et al. SemClinBr
- a multi-institutional and multi-specialty semantically annotated
corpus for Portuguese clinical NLP tasks.
Journal of Biomedical Semantics, v. 13, n. 1, a2022.
OLIVEIRA, L. F. A. DE et al. Challenges In Annotating A Treebank
Of Clinical Narratives In Brazilian Portuguese. Computational
Processing of the Portuguese Language: 15th International Conference,
PROPOR 2022, Fortaleza, Brazil, March 21–23, 2022, Proceedings.
Anais...Berlin, Heidelberg: Springer-Verlag, b2022.
Disponível em: <https://doi.org/10.1007/978-3-030-98305-5_9>
OLIVEIRA, L.; CLARO, D.; SOUZA, M. DptOIE: a Portuguese
open information extraction based on dependency analysis.
Artificial Intelligence Review, v. 56, p. 1–32, dez.
2022.
OLIVEIRA, M. R. DE. Manual de Linguística. Em: MARTELOTTA, M. E. (Ed.).
São Paulo: Contexto, 2008. p. 193–204.
OLIVEIRA, N. et al. Processamento de Linguagem Natural para
Identificação de Notícias Falsas em Redes Sociais: Ferramentas,
Tendências e Desafios. Em: [s.l.] SBC, 2020.
OPENAI. ChatGPT: OpenA’s conversational AI model.
Disponível em: <https://openai.com/blog/chatgpt/>.
Acesso em: 7 abr. 2023.
ORENGO, V. M.; BURIOL, L. S.; COELHO, A. R. A study on the use
of stemming for monolingual ad-hoc Portuguese information
retrieval. Workshop of the Cross-Language Evaluation Forum for
European Languages. Anais...Springer, 2006.
ORENGO, V. M.; HUYCK, C. A Stemming Algorithmm
for the Portuguese Language. Proceedings Eighth Symposium
on String Processing and Information Retrieval.
Anais...IEEE Computer Society, 2001.
OSBORNE, T.; GERDES, K. The status of function
words in dependency grammar: A critique of Universal Dependencies
(UD). Glossa: a journal of general linguistics
(2016-2021), jan. 2019.
OSGOOD, C. E.; SUCI, G. J.; TENENBAUM, P. H. The Measurement of
meaning. Urbana: University of Illinois Press, 1957.
OSTENDORF, M.; PRICE, P.; SHATTUCK-HUFNAGEL, S. The
Boston University Radio news
corpus., 1995. Disponível em: <https://doi.org/10.35111/Z7XK-Z229>
OUYANG, L. et al. Training language models to follow
instructions with human feedback. NeurIPS.
Anais...2022. Disponível em: <http://papers.nips.cc/paper\_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html>
OVCHINNIKOVA, E. Integration of World Knowledge for Natural
Language Understanding. [s.l.] Atlantis Press, 2012.
OVERWIJK, A.; XIONG, C.; CALLAN, J. ClueWeb22: 10 Billion Web
Documents with Rich Information. (E. Amigó et al.,
Eds.)SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, Madrid, Spain, July 11 - 15, 2022.
Anais...ACM, 2022. Disponível em: <https://doi.org/10.1145/3477495.3536321>
ÖZSEVEN, T. Investigation of the effect of spectrogram images and
different texture analysis methods on speech emotion recognition.
Applied Acoustics, v. 142, p. 70–77, 2018.
PAGE, E. B.; PETERSEN, N. S. The Computer Moves into Essay Grading:
Updating the Ancient Test. Phi Delta Kappan, v. 76, p.
561–565, mar. 1995.
PĂIŞ, V.; TUFIŞ, D. Capitalization
and punctuation restoration: a survey.
Artificial Intelligence Review, v. 55, p.
1681--1722, 2022.
PALMER, M.; GILDEA, D.; KINGSBURY, P. The Proposition Bank: An
Annotated Corpus of Semantic Roles. Computational Linguistics,
31: 1. Anais...The MIT PressJournals, 2005.
PAPINENI, K. et al. BLEU: A Method for Automatic
Evaluation of Machine Translation. Proceedings of the
40th Annual Meeting on Association for Computational Linguistics.
Anais...: ACL ’02.USA: Association for Computational
Linguistics, 2002. Disponível em: <https://doi.org/10.3115/1073083.1073135>
PARDO, T. et al. Porttinari - a Large Multi-genre Treebank for
Brazilian Portuguese. Anais do XIII Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível
em: <https://sol.sbc.org.br/index.php/stil/article/view/17778>
PARDO, T. A. S. Métodos para análise
discursiva automática. tese de doutorado—[s.l.]
Universidade de São Paulo, 2005.
PARK, D. S. et al. SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.
Interspeech 2019. Anais...ISCA, set. 2019.
Disponível em: <https://doi.org/10.21437%2Finterspeech.2019-2680>
PAROUBEK, P.; CHAUDIRON, S.; HIRSCHMAN, L. Principles of
Evaluation in Natural Language Processing. Traitement
Automatique des Langues, Volume 48, Numéro 1 : Principes de
l’évaluation en Traitement Automatique des Langues
[Principles of Evaluation in Natural Language Processing].
Anais...France: ATALA (Association pour le Traitement
Automatique des Langues), 2007. Disponível em: <https://aclanthology.org/2007.tal-1.1>
PASQUALOTTI, P. R. WordNet Affect BR – uma base de expressões de
emoção em Português. [s.l.] Novas Edições Acadêmicas, 2015.
PELLE, R. P. DE; MOREIRA, V. Offensive Comments in the Brazilian
Web: a dataset and baseline results. Anais do VI Brazilian
Workshop on Social Network Analysis and Mining.
Anais...2017.
PENNEBAKER, J. W.; FRANCIS, M. E.; BOOTH, R. J. Linguistic
Inquiry and Word Count. [s.l.] Lawerence Erlbaum Associates,
2001.
PENNINGTON, J.; SOCHER, R.; MANNING, C.
GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Anais...Doha, Qatar: Association for Computational
Linguistics, out. 2014. Disponível em: <https://aclanthology.org/D14-1162>
PEREIRA, D. A. A Survey of Sentiment Analysis in the Portuguese
Language. Artificial Intelligence Review, 2021.
PEREIRA, V.; PINHEIRO, V. Report - um sistema de
extração de
informações aberta para língua
portuguesa. Anais do X Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem
Humana. Anais...SBC, 2015.
PERRIGO, B. Disponível em: <https://time.com/6247678/openai-chatgpt-kenya-workers/>.
Acesso em: 9 abr. 2023.
PERSING, I.; NG, V. Modeling Prompt Adherence in Student
Essays. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.
Anais...Baltimore, Maryland: Association for
Computational Linguistics, jun. 2014.
PETERS, M. E. et al. Deep Contextualized Word
Representations. (M. A. Walker, H. Ji, A. Stent,
Eds.)Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers).
Anais...Association for Computational Linguistics,
2018. Disponível em: <https://doi.org/10.18653/v1/n18-1202>
PETRI, M. J. C. Manual de Linguagem Jurídica. 3rd. ed.
São Paulo: Saraiva, 2017.
PIĘKOS, P.; MALINOWSKI, M.; MICHALEWSKI, H. Measuring and
Improving BERT’s Mathematical Abilities by
Predicting the Order of Reasoning. Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Anais...Online: Association
for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-short.49>
PING, W. et al. Deep voice 3: 2000-speaker neural text-to-speech.
arXiv preprint arXiv:1710.07654, 2017.
PINHEIRO, V. et al. InferenceNet.Br: Expression of
Inferentialist Semantic Content of the Portuguese Language. (T.
A. S. Pardo et al., Eds.)Computational Processing of the Portuguese
Language. Anais...Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.
PIRES, R. et al. Sabiá: Portuguese Large Language
Models. Anais da XII Brazilian Conference on Intelligent
Systems - BRACIS 2023. Anais...2023. Disponível em:
<https://arxiv.org/abs/2304.07880>
PIRINA, I.; ÇÖLTEKIN, ÇAĞRI. Identifying Depression on
Reddit: The Effect of Training Data. Proceedings
of the 2018 EMNLP Workshop SMM4H:
The 3rd Social Media Mining for Health Applications Workshop
& Shared Task. Anais...2018.
POESIO, M.; STUCKARDT, R.; VERSLEY, Y. Anaphora
Resolution: Algorithms, Resources, and Applications. 1.
ed. [s.l.] Springer, 2016.
PONTIKI, M. et al. SemEval-2014 Task
4: Aspect Based Sentiment Analysis. Proceedings of the 8th
International Workshop on Semantic Evaluation.
Anais...2014.
PONTIKI, M. et al. SemEval-2015 Task
12: Aspect Based Sentiment Analysis. Proceedings of the 9th
International Workshop on Semantic Evaluation.
Anais...2015.
PONTIKI, M. et al. SemEval-2016 Task
5: Aspect Based Sentiment Analysis. Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016). Anais...2016.
POPOVIC, M.; BURCHARDT, A. From Human to Automatic Error
Classification for Machine Translation Output. Proceedings of
the 15th Conference of the European Association for Machine Translation.
Anais...Leuven, Belgium: 2011. Disponível em: <https://aclanthology.org/2011.eamt-1.36.pdf>
POPOVIĆ, M. chrF: character n-gram
F-score for automatic MT evaluation.
Proceedings of the Tenth Workshop on Statistical Machine Translation.
Anais...Lisbon, Portugal: Association for Computational
Linguistics, set. 2015. Disponível em: <https://aclanthology.org/W15-3049>
PORTER, M. F. An algorithm
for suffix stripping. Program, v. 14, n. 3, p.
130–137, 1980.
POSNER, J.; RUSSELL, J. A.; PETERSON, B. S. The circumplex model of
affect: An integrative approach to affective neuroscience, cognitive
development, and psychopathology. Development and
psychopathology, v. 17, n. 3, p. 715–734, 2005.
PRADHAN, S. et al. CoNLL-2011 shared task: Modeling unrestricted
coreference in ontonotes. Proceedings of the Fifteenth
Conference on Computational Natural Language Learning: Shared Task.
Anais...Portland, Oregon: Association for Computational
Linguistics, 2011.
PRADHAN, S. et al. CoNLL-2012 shared task: Modeling multilingual
unrestricted coreference in OntoNotes. Proceedings of Joint
Conference on Empirical Methods in Natural Language Processing and
Conference on Natural Language Learning - Shared Task.
Anais...Jeju Island, Korea: 2012.
PRADHAN, S. et al. Scoring Coreference Partitions of Predicted
Mentions: A Reference Implementation. Proceedings
of the 52nd Annual Meeting of the Association for Computational
Linguistics. Anais...Baltimore, MD, USA: 2014.
Disponível em: <http://aclweb.org/anthology/P/P14/P14-2006.pdf>
PRATAP, V. et al. Massively Multilingual ASR: 50 Languages, 1
Model, 1 Billion Parameters., a2020. Disponível em: <https://arxiv.org/abs/2007.03001>
PRATAP, V. et al. MLS: A Large-Scale Multilingual Dataset for Speech
Research. Proc. Interspeech 2020, p. 2757–2761, b2020.
PROVILKOV, I.; EMELIANENKO, D.; VOITA, E. BPE-Dropout:
Simple and Effective Subword Regularization. Proceedings of
the 58th Annual Meeting of the Association for Computational
Linguistics. Anais...Online: Association for
Computational Linguistics, jul. 2020.
PURINGTON, A. et al. " Alexa is my new BFF" Social Roles, User
Satisfaction, and Personification of the Amazon Echo.
Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. Anais...2017.
QIU, Q. et al. BiLSTM-CRF for geological named entity recognition from
the geoscience literature. Earth Science Informatics,
v. 12, n. 4, p. 565–579, 2019.
QUINTANILHA, I. M.; NETTO, S. L.; BISCAINHO, L. W. P. An open-source
end-to-end ASR system for Brazilian Portuguese using DNNs built from
newly assembled corpora. Journal of Communication and
Information Systems, v. 35, n. 1, p. 230–242, 2020.
RABINER, L. R.; JUANG, B. H. Fundamentals of
Speech Recognition. [s.l.] Pearson Education, 1993.
RADEMAKER, A. et al. Universal
Dependencies for Portuguese.
Proceedings of the Fourth International Conference on Dependency
Linguistics (Depling 2017). Anais...Pisa,Italy:
Linköping University Electronic Press, set. 2017.
Disponível em: <https://aclanthology.org/W17-6523>
RADEV, D. R. A common theory of information fusion from multiple
text sources step one: cross-document structure. 1st SIGdial
workshop on Discourse and Dialogue. Anais...2000.
RADFORD, A. et al. Language Models are Unsupervised Multitask
Learners. 2019.
RADFORD, A. et al. Robust speech recognition via large-scale weak
supervision. arXiv preprint arXiv:2212.04356, 2022.
RADFORD, A.; NARASIMHAN, K. Improving Language Understanding by
Generative Pre-Training. 2018.
RAE, J. W. et al. Scaling
Language Models: Methods, Analysis & Insights from
Training Gopher. CoRR, v. abs/2112.11446, 2021.
RAFFEL, C. et al. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer.
J. Mach. Learn. Res., v. 21, p. 140:1–140:67, 2020.
RAHMAN, A.; NG, V. Coreference Resolution with World
Knowledge. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies.
Anais...Portland, Oregon, USA: b2011. Disponível em:
<http://www.aclweb.org/anthology/P11-1082>
RAHMAN, A.; NG, V. Narrowing the modeling gap: a cluster-ranking
approach to coreference resolution. Journal of Artificial
Intelligence Research, p. 469–521, a2011.
RAMISCH, R. Caracterização de desvios
sintáticos em redações de
estudantes do ensino médio: subsídios para o
processamento automático das línguas
naturais. mathesis—[s.l.] Universidade Federal de
São Carlos, 2020.
RANCHHOD, E.; MOTA, C.; BAPTISTA, J. A Computational Lexicon of
Portuguese for Automatic Text Parsing.
SIGLEX99: Standardizing Lexical Resources.
Anais...1999. Disponível em: <https://aclanthology.org/W99-0511>
RAO, K. S.; KOOLAGUDI, S. G.; VEMPADA, R. R. Emotion recognition from
speech using global and local prosodic features. International
journal of speech technology, v. 16, p. 143–160, 2013.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de
referência do português brasileiro falado informal. Belo
Horizonte: Editora UFMG, 2012a.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de
referência do português brasileiro falado
informal. A general presentation. Speech and
Corpora, p. 16, b2012.
RASO, T.; TEIXEIRA, B.; BARBOSA, P. Modelling automatic
detection of prosodic boundaries for Brazilian
Portuguese spontaneous speech. Journal of
Speech Sciences, v. 9, p. 105–128, set. 2020.
RAU, L. F. Extracting company names from text.
Proceedings the Seventh IEEE Conference on Artificial Intelligence
Application. Anais...IEEE Computer Society, 1991.
READ, J. et al. Sentence Boundary Detection: A Long Solved
Problem? Proceedings of COLING 2012: Posters.
Anais...Mumbai, India: The COLING 2012 Organizing
Committee, dez. 2012. Disponível em: <https://aclanthology.org/C12-2096>
REAL, L.; FONSECA, E.; GONÇALO OLIVEIRA, H. The ASSIN 2 Shared
Task: A Quick Overview. Computational Processing of the
Portuguese Language: 14th International Conference, PROPOR 2020, Evora,
Portugal, March 2–4, 2020, Proceedings. Anais...Berlin,
Heidelberg: Springer-Verlag, 2020. Disponível em: <https://doi.org/10.1007/978-3-030-41505-1_39>
RECASENS, M.; HOVY, E. H. BLANC:
Implementing the Rand index for coreference evaluation.
Natural Language Engineering, v. 17, n. 4, p. 485–510,
2011.
RECUERO, R. Redes Sociais na Internet. [s.l.] Ciber
Cultura, 2009.
REI, R. et al. COMET: A Neural Framework for
MT Evaluation. Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.213>
REIMERS, N.; GUREVYCH, I. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing.
Anais...Association for Computational Linguistics, nov.
2019. Disponível em: <https://arxiv.org/abs/1908.10084>
REIMERS, N.; GUREVYCH, I. Making Monolingual Sentence Embeddings
Multilingual using Knowledge Distillation. Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing.
Anais...Association for Computational Linguistics, nov.
2020. Disponível em: <https://arxiv.org/abs/2004.09813>
RESENDE, G. et al. (Mis)Information Dissemination in WhatsApp:
Gathering, Analyzing and Countermeasures. Proceedings of the
World Wide Web Conference. Anais...2019.
REVIEW, M. T. Um aplicativo de Inteligência Artificial que
“desnudava” mulheres mostra como as deepfakes prejudicam os
mais vulneráveis. Disponível em: <
https://mittechreview.com.br/um-aplicativo-de-inteligencia-artificial-que-desnudava-mulheres-mostra-como-as-deepfakes-prejudicam-os-mais-vulneraveis/>.
Acesso em: 28 ago. 2023.
REYES, A.; ROSSO, P.; BUSCALDI, D. From Humor Recognition to Irony
Detection: The Figurative Language of Social Media. Data &
Knowledge Engineering, 2012.
RIJSBERGEN, C. JOOST. VAN. Information Retrieval.
[s.l.] Butterworths, 1979.
RILOFF, E. et al. Automatically constructing a dictionary for
information extraction tasks. AAAI.
Anais...Citeseer, 1993.
RILOFF, E.; JONES, R.; et al. Learning dictionaries for
information extraction by multi-level bootstrapping. AAAI/IAAI.
Anais...1999.
RIZZOLATTI, G.; ARBIB, M. A. Language within our
grasp. Trends in Neurosciences, v. 21, n. 5, p.
188–194, 1998.
RO, Y.; LEE, Y.; KANG, P.
Multi^2OIE: Multilingual
Open Information Extraction Based on Multi-Head Attention with
BERT. Findings of the Association for
Computational Linguistics: EMNLP 2020. Anais...Online:
Association for Computational Linguistics, nov. 2020. Disponível em:
<https://aclanthology.org/2020.findings-emnlp.99>
ROARK, B.; CHARNIAK, E. Noun-phrase co-occurrence statistics for
semi-automatic semantic lexicon construction. arXiv preprint
cs/0008026, 2000.
ROBERTSON, S. E.; SPÄRCK JONES, K. Relevance weighting of search terms.
Journal of the American Society for Information
science, v. 27, n. 3, p. 129–146, 1976.
ROCCHIO-JR, J. J. Relevance feedback in information retrieval.
The SMART retrieval system: experiments in automatic document
processing, 1971.
ROCHA, M. A corpus-based study of anaphora in English and Portuguese,
Corpus-based and Computational Approaches to Discourse Anaphora. Em:
[s.l.] John Benjamins Publishing Company, 2000. p. 81–94.
RODRIGUES, J. et al. Advancing Neural
Encoding of Portuguese with Transformer Albertina PT-.
CoRR, v. abs/2305.06721, 2023.
RODRIGUES, R. C. et al. Portuguese Language
Models and Word Embeddings: Evaluating on Semantic Similarity
Tasks. (P. Quaresma et al., Eds.)Computational Processing
of the Portuguese Language. Anais...Springer Nature
Switzerland AG: Springer International Publishing, 2020.
ROMERA-PAREDES, B.; TORR, P. H. S. An embarrassingly simple
approach to zero-shot learning. (F. R. Bach, D. M. Blei,
Eds.)Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015.
Anais...: JMLR Workshop e Conference
Proceedings.JMLR.org, 2015. Disponível em: <http://proceedings.mlr.press/v37/romera-paredes15.html>
RONCARATI, C. As cadeias do texto: construindo
sentidos. [s.l.] Parábola, 2010.
ROTH, D.; YIH, W. Global inference for entity and relation
identification via a linear programming formulation.
Introduction to statistical relational learning, p.
553–580, 2007.
RUPPENHOFER, J. et al. FrameNet
II: Extended theory and practice. [s.l: s.n.].
RUSSEL, S. Human Compatible Artificial Intelligence and the
Problem of Control. [s.l.] Penguin Books, 2019.
RUSSELL, M. A. Mineração de Dados da Web Social.
Primeira edição ed. São Paulo: O’Reilly Novatec, 2011.
SAEKI, T. et al. Virtuoso: Massive Multilingual Speech-Text
Joint Semi-Supervised Learning for Text-To-Speech., 2023.
Disponível em: <https://arxiv.org/abs/2210.15447>
SAG, I. A. et al. Multiword Expressions: A Pain in the Neck for
NLP. Conference on Intelligent Text Processing and
Computational Linguistics. Anais...2002. Disponível em:
<https://api.semanticscholar.org/CorpusID:1826481>
SAGER, N. Natural language information formatting: the automatic
conversion of texts to a structured data base. Em: Advances in
computers. [s.l.] Elsevier, 1978. v. 17p. 89–162.
SAGER, N.; FRIEDMAN, C.; LYMAN, M. S. Medical language
processing: computer management of narrative data. [s.l.]
Addison-Wesley Longman Publishing Co., Inc., 1987.
SAI, A. B.; MOHANKUMAR, A. K.; KHAPRA, M. M. A Survey of Evaluation Metrics
Used for NLG Systems. ACM Comput.
Surv., v. 55, n. 2, p. 26:1–26:39, 2023.
SALESKY, E. et al. The multilingual tedx corpus for speech recognition
and translation. arXiv preprint arXiv:2102.01757, 2021.
SALOMÃO, M. M. M. FrameNet Brasil: A work in progress.
Calidoscópio, v. 7, p. 171–182, 2009.
SALTON, G.; ALLAN, J. Text
retrieval using the vector processing model. dez. 1994.
SALTON, G.; MCGILL, M. J. Introduction to Modern Information
Retrieval. [s.l.] McGraw-Hill, 1983.
SANDERSON, M. et al. Test collection based evaluation of information
retrieval systems. Foundations and Trends in
Information Retrieval, v. 4, n. 4, p. 247–375, 2010.
SANG, E. T. K.; DE MEULDER, F. Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition.
Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003. Anais...2003.
SANH, V. et al. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, v. abs/1910.01108, 2019.
SANTANA, B. P. Morfologia ornamental: as
vogais temáticas do português brasileiro o
Unitex-PB. mathesis—Curitiba, PR: Universidade
Federal do Paraná, Setor de Ciências Humanas, Programa de Pós-Graduação
em Letras, 2019.
SANTANA, B. S. A computational-linguistic-based approach to
support the analysis of the discursive configuration of violence on
social media. tese de doutorado—[s.l.] Universidade Federal do
Rio Grande do Sul, 2023.
SANTOS, A. A. et al. O teste de Cloze na
avaliação da compreensão em
leitura. Psicologia: reflexão e
crı́tica, v. 15, p. 549–560, 2002.
SANTOS, C. N. DOS; GUIMARÃES, V. Boosting Named Entity
Recognition with Neural Character Embeddings. (X. Duan et al.,
Eds.)Proceedings of the 5th Named Entity Workshop.
Anais...Association for Computational Linguistics,
2015.
SANTOS, D. Avaliação conjunta. Em: SANTOS, D. (Ed.).
Avaliação conjunta: um novo paradigma no
processamento computacional da língua portuguesa. Lisboa,
Portugal: IST Press, 2007. p. 1–12.
SANTOS, D.; CARDOSO, N. Breve introdução ao HAREM. (D.
Santos, N. Cardoso, Eds.)Reconhecimento de entidades mencionadas em
português: Documentação e actas do HAREM, a primeira
avaliação conjunta na área.
Anais...Linguateca, a2007. Disponível em: <http://www.linguateca.pt/LivroHAREM/>
SANTOS, D.; CARDOSO, N. A golden resource for named entity
recognition in portuguese. Proceeding of the 7th International
conference on the computational processing of portuguese.
Anais...b2007.
SANTOS, D.; CARDOSO, N.; SECO, N. Avaliação no HAREM: Métodos e
medidas. (D. Santos, N. Cardoso, Eds.)Reconhecimento de
entidades mencionadas em português: Documentação e actas do HAREM, a
primeira avaliação conjunta na área.
Anais...Linguateca, 2007.
SANTOS, D.; ROCHA, P. The key to the first CLEF
with Portuguese: Topics, questions and answers in
CHAVE. Workshop of the Cross-Language Evaluation
Forum for European Languages. Anais...2004.
SANTOS, H. D. P. D.; ULBRICH, A. H. D. P. S.; VIEIRA, R.
Evaluation of a Prescription Outlier Detection System in
Hospital’s Pharmacy Services. 2021 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM).
Anais...IEEE, 2021.
SANTOS, J. et al. Assessing the Impact of Contextual Embeddings
for Portuguese Named Entity Recognition. Proceedings of the 8th
Brazilian Conference on Intelligent Systems.
Anais...2019.
SANTOS, J. et al. De-identification of clinical notes using
contextualized language models and a token classifier.
Brazilian Conference on Intelligent Systems.
Anais...Springer, 2021.
SANTOS, J.; SANTOS, H. D. P. DOS; VIEIRA, R. Fall Detection in
Clinical Notes using Language Models and Token Classifier. (A.
G. S. de Herrera et al., Eds.)Proceedings of the 33rd IEEE
International Symposium on Computer-Based Medical Systems.
Anais...2020.
SANTOS, V. G. et al. CORAA NURC-SP
Minimal Corpus: a manually annotated corpus of
Brazilian Portuguese spontaneous
speech. Proc. IberSPEECH 2022.
Anais...2022.
SARAH HICKEY. Nimdzi 100 - Language
Services Industry Market
Report 2020.pdf. [s.l: s.n.].
SARDINHA, T. B. Lingüística de
Corpus: histórico e problemática. DELTA: Documentação de
Estudos em Lingüística Teórica e Aplicada, v. 16, n. 2, p.
323–367, 2000.
SARMENTO, C. DA S. Da Abordagem do Léxico em Livros
Didáticos de Língua Portuguesa: os Anos Finais
do Ensino Fundamental. mathesis—Brasília: UnB, 2019.
SARMENTO, L.; PINTO, A. S.; CABRAL, L. REPENTINO – a wide-scope
gazetteer for entity recognition in portuguese. Proceedings of
International Workshop on Computational Processing of the Portuguese
Language. Anais...Springer, 2006.
SARTORI, L.; THEODOROU, A. A Sociotechnical
Perspective for the Future of AI: Narratives, Inequalities, and Human
Control. Ethics and Inf. Technol., v. 24, n. 1,
mar. 2022.
SCAO, T. L. et al. BLOOM:
A 176B-Parameter Open-Access Multilingual Language
Model. CoRR, v. abs/2211.05100, 2022.
SCARTON, C. E.; ALUISIO, S. M. Towards a cross-linguistic
VerbNet-style lexicon for Brazilian portuguese.
Workshop on Creating Cross-language Resources for Disconnected Languages
and Styles - CREDISLAS. Anais...ELRA, 2012.
SCARTON, C. E.; ALUÍSIO, S. M. Análise da Inteligibilidade
de textos via ferramentas de Processamento de
Língua Natural: adaptando as
métricas do Coh-Metrix para o
Português.
Linguamática, v. 2, n. 1, p. 45–61, abr.
2010.
SCHANK, R. C. et al. MARGIE: Memory Analysis Response
Generation, and Inference on English. IJCAI.
Anais...1973.
SCHICK, T.; SCHÜTZE, H. Exploiting Cloze-Questions for Few-Shot
Text Classification and Natural Language Inference. (P. Merlo,
J. Tiedemann, R. Tsarfaty, Eds.)Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics:
Main Volume, EACL 2021, Online, April 19 - 23, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.eacl-main.20>
SCHMID, H. Part-of-Speech
Tagging with Neural
Networks., 1994. Disponível em: <https://arxiv.org/abs/cmp-lg/9410018>
SCHMIDHUBER, J.; HEIL, S. Sequential neural text
compression. IEEE Transactions on Neural Networks,
v. 7, n. 1, p. 142–146, 1996.
SCHMITZ, M. et al. Open language learning for information
extraction. Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. Anais...: EMNLP-CoNLL
’12.Stroudsburg, PA, USA: Association for Computational Linguistics;
Association for Computational Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2390948.2391009>
SCHUBERT, G.; FREITAS, L. A. DE. A Construção de um Corpus para
Detecção de Ironia e Sarcasmo em Português. Anais do XVII
Encontro Nacional de Inteligência Artificial e Computacional.
Anais...2020.
SCHUSTER, M.; NAKAJIMA, K. Japanese and Korean
voice search. 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
Anais...2012.
SEARA, I. Estudo Estatístico dos Fonemas do
Português Brasileiro Falado na Capital de Santa Catarina
para Elaboração de Frases Foneticamente
Balanceadas. tese de doutorado—[s.l.]
Dissertação de Mestrado, Universidade Federal
de Santa Catarina …, 1994.
SEKINE, S. Description of the Japanese NE system used for
MET-2. Seventh Message Understanding Conference (MUC-7):
Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1,
1998. Anais...1998.
SELLAM, T.; DAS, D.; PARIKH, A. P. BLEURT: Learning
Robust Metrics for Text Generation. Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020.
Anais...2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.704>
SELLARS, W. Inference and
Meaning. Mind, v. 62, n. 247, p. 313–338, 1953.
SENA, C. F. L.; CLARO, D. B. InferPortOIE: A Portuguese Open Information
Extraction system with inferences. Natural Language
Engineering, v. 25, n. 2, p. 287–306, 2019.
SENA, C. F. L.; CLARO, D. B. PragmaticOIE: a
pragmatic open information extraction for Portuguese language.
Knowl. Inf. Syst., v. 62, n. 9, p. 3811–3836, 2020.
SENA, C. F. L.; GLAUBER, R.; CLARO, D. B. Inference Approach to
Enhance a Portuguese Open Information Extraction.
Proceedings of the 19th International Conference on Enterprise
Information Systems - Volume 3: ICEIS. Anais...INSTICC;
SciTePress, 2017.
SENNRICH, R.; HADDOW, B.; BIRCH, A. Improving Neural
Machine Translation Models with Monolingual Data.
Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL 2016).
Anais...a2016. Disponível em: <https://arxiv.org/abs/1511.06709>
SENNRICH, R.; HADDOW, B.; BIRCH, A. Neural Machine Translation
of Rare Words with Subword Units. Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Anais...Berlin, Germany: Association
for Computational Linguistics, ago. b2016. Disponível em: <https://aclanthology.org/P16-1162>
SENO, E. R. M. RHeSumaRST: um sumarizador
automático de estruturas RST. mathesis—[s.l.]
Universidade Federal de São Carlos, 2005.
SERRA, C. R. Realização e percepção de fronteiras prosódicas no
português do Brasil: fala espontânea e leitura.
tese de doutorado—Rio de Janeiro: Universidade Federal do Rio de
Janeiro, 2009.
SHANNON, C. E. Prediction and entropy of printed English. Bell
System Technical Journal, v. 30, n. 1, p. 50–64, 1951.
SHAOWEI, Z. et al. Survey of Supervised Joint Entity Relation Extraction
Methods. Journal of Frontiers of Computer Science &
Technology, v. 16, n. 4, 2022.
SHAPIRO, S. C. SNePS: A Logic for
Natural Language Understanding and Commonsense Reasoning. Em:
Natural Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language. Cambridge,
MA, USA: MIT Press, 2000. p. 175–195.
SHEIKHALISHAHI, S. et al. Natural Language Processing of Clinical Notes
on Chronic Diseases: Systematic Review. JMIR Med
Inform, v. 7, n. 2, p. e12239, abr. 2019.
SHEN, J. et al. Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions. 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
Anais...IEEE, 2018.
SHERMIS, M. D.; BURSTEIN, J. Handbook of Automated Essay
Evaluation: Current Applications and New Directions. [s.l.]
Routledge/Taylor & Francis Group, 2013.
SHI, Z.; LIPANI, A. Don’t Stop Pretraining? Make Prompt-based
Fine-tuning Powerful Learner., 2023. Disponível em: <https://arxiv.org/abs/2305.01711>
SHICKEL, B. et al. Deep EHR: A Survey of Recent Advances in
Deep Learning Techniques for Electronic Health Record (EHR)
Analysis. IEEE J Biomed Health Inform, v. 22, n. 5, p.
1589–1604, out. 2017.
SHIMANAKA, H.; KAJIWARA, T.; KOMACHI, M. Machine Translation Evaluation
with BERT Regressor. arXiv, v.
abs/1907.12679, 2019.
SHTERIONOV, D. et al. Human versus Automatic Quality Evaluation of
NMT and PBSMT. Machine
Translation, v. 32, n. 3, p. 217–235, 2018.
SIDDHI, D.; VERGHESE, J. M.; BHAVIK, D. Survey on various methods of
text to speech synthesis. International Journal of Computer
Applications, v. 165, n. 6, 2017.
SIDNER, C. A progress report on the discourse and reference
components of PAL. [s.l.] Massachusetts Institute of Tech
Cambridge Artificial Intelligence LAB, 1978.
SILVA, A. P. DA et al. Risco de queda relacionado a medicamentos em
hospitais: abordagem de aprendizado de máquina.
Acta Paulista de Enfermagem, v. 36, 2023.
SILVA, E.; PARDO, T.; ROMAN, N. Etiquetagem morfossintática
multigênero para o português do Brasil segundo o modelo Üniversal
Dependencies̈. Anais do XIV Simpósio Brasileiro de Tecnologia da
Informação e da Linguagem Humana. Anais...Porto Alegre,
RS, Brasil: SBC, 2023. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25438>
SILVA, F. L. V. DA et al. ABSAPT 2022 at IberLEF: Overview
of the Task on Aspect-Based Sentiment Analysis in Portuguese.
Procesamiento del Lenguaje Natural, 2022.
SILVA, F. R. A. DA. Detecção de Ironia e Sarcasmo em Língua
Portuguesa: uma abordagem utilizando Deep Learning. https://github.com/fabio-ricardo/deteccao-ironia, 2018.
SILVA, I. A. L. DA et al. Translation, post-editing and directionality.
Translation in transition: Between cognition, computing and
technology, p. 107–134, 2017.
SILVA, J. F. DA. Resolução de
correferência em múltiplos documentos
utilizando aprendizado não supervisionado.
Dissertação de Mestrado, Universidade de São Paulo, 2011.
SILVA, M. J.; CARVALHO, P.; SARMENTO, L. Building a Sentiment
Lexicon for Social Judgement Mining. Proceedings of the 10th
International Conference on Computational Processing of the Portuguese
Language. Anais...2012.
SIMÕES, A.; GUINOVART, X. G. Bootstrapping a Portuguese WordNet
from Galician, Spanish and English Wordnets. IberSPEECH
Conference. Anais...2014. Disponível em: <https://api.semanticscholar.org/CorpusID:10377782>
SINGH, P. et al. Open Mind Common Sense: Knowledge Acquisition
from the General Public. (R. Meersman, Z. Tari, Eds.)On the
Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2002.
SINGH, Y. B.; GOEL, S. A systematic literature review of speech emotion
recognition approaches. Neurocomputing, 2022.
SMIRNOVA, A.; CUDRÉ-MAUROUX, P. Relation extraction using distant
supervision: A survey. ACM Computing Surveys (CSUR), v.
51, n. 5, p. 1–35, 2018.
SMITH, G.; RUSTAGI, I. Mitigating Bias in Artificial
Intelligence: An Equity Fluent Leadership Playbook. [s.l.]
Berkeley Haas Center for Equity, Gender; Leadership, 2020.
SMITH, K. S. On Integrating Discourse in Machine
Translation. Proceedings of the Third Workshop on
Discourse in Machine Translation. Anais...2017.
SNOVER, M. G. et al. A Study of Translation Edit Rate with
Targeted Human Annotation. Proceedings of the 7th Conference of
the Association for Machine Translation in the Americas: Technical
Papers, AMTA 2006, Cambridge, Massachusetts, USA, August
8-12, 2006. Anais...2006. Disponível em: <https://aclanthology.org/2006.amta-papers.25/>
SOCHER, R. et al. Semantic compositionality through recursive
matrix-vector spaces. Proceedings of the 2012 joint conference
on empirical methods in natural language processing and computational
natural language learning. Anais...2012.
SODERLAND, S. et al. CRYSTAL inducing a conceptual
dictionary. Proceedings of the 14th international joint
conference on Artificial intelligence-Volume 2.
Anais...1995.
SOLORIO, T. MALINCHE: A NER system for Portuguese that reuses knowledge
from Spanish. Reconhecimento de entidades mencionadas em
português: Documentação e atas do
HAREM, a primeira avaliação conjunta na
área, Capı́tulo, v. 10, p. 123–136,
2007.
SOON, W. M.; NG, H. T.; LIM, C. Y. A Machine Learning
Approach to Coreference Resolution of Noun Phrases.
Computational Linguistics, v. 27, n. 4, p. 521–544,
2001.
SOUSA, A. et al. Cross-Lingual Annotation Projection for
Argument Mining in Portuguese. (G. Marreiros et al.,
Eds.)Progress in Artificial Intelligence.
Anais...Springer International Publishing, 2021.
SOUSA, R. F. DE; BRUM, H. B.; NUNES, M. DAS G. V. A bunch of
helpfulness and sentiment corpora in brazilian portuguese.
Proceedings of Symposium in Information and Human Language Technology.
Anais...2019.
SOUZA, E. DE. Construção e avaliação
de um treebank padrão ouro. Mestrado—[s.l.] PUC-Rio, 2023.
SOUZA, E. DE; FREITAS, C. Explorando variações no tagset e na
anotação Universal Dependencies (UD) para Português: Possibilidades e
resultados com base no treebank PetroGold. Anais do XIV
Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana.
Anais...Association for Computational Linguistics,
2023.
SOUZA, E. N. P. DE; CLARO, D. B.; GLAUBER, R. A Similarity Grammatical
Structures Based Method for Improving Open Information Systems.
j-jucs, v. 24, n. 1, p. 43–69, 28 jan. 2018.
SOUZA, E. N. P.; CLARO, D. B. Extração
de Relações utilizando Features Diferenciadas para Português.
Linguamática, v. 6, n. 2, p. 57–65, 2014.
SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. BERTimbau: pretrained BERT
models for Brazilian Portuguese. (R. Cerri, R. C. Prati,
Eds.)Proceedings of the 2020 Brazilian Conference on Intelligent
Systems. Anais...Springer International Publishing,
2020.
SOUZA, J. W. DA C. Descrição
linguística da complementaridade para a
sumarização automática
multidocumento. mathesis—[s.l.] Universidade Federal de
São Carlos, 2015.
SOUZA, J. W. DA C. Aprofundamento da
caracterização
linguı́stico-computacional da complementaridade em um corpus
jornalı́stico multidocumento. tese de
doutorado—[s.l.] Universidade Federal de São Carlos, 2019.
SOUZA, M. et al. Construction of a Portuguese
Opinion Lexicon from multiple resources. Proceedings of the 8th
Brazilian Symposium in Information and Human Language Technology.
Anais...2011.
SPÄRCK JONES, K. Report on the need for and provision of an ’ideal’
information retrieval test collection. Computer
Laboratory, 1975.
SPÄRCK JONES, K.; WALKER, S.; ROBERTSON, S. E. A probabilistic model of
information retrieval: development and comparative experiments.
Information processing & management, v. 36, n. 6,
p. 809–840, 2000.
SPEER, R.; CHIN, J.; HAVASI, C. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. CoRR, v.
abs/1612.03975, 2016.
STAB, C. et al. Argumentation Mining in Persuasive Essays and
Scientific Articles from the Discourse Structure Perspective.
ArgNLP. Anais...2014.
STANOJEVIC, M.; SIMA’AN, K. BEER: BEtter Evaluation
as Ranking. Proceedings of the Ninth Workshop on Statistical
Machine Translation, WMT@ACL 2014, June 26-27, 2014, Baltimore,
Maryland, USA. Anais...2014. Disponível
em: <https://doi.org/10.3115/v1/w14-3354>
STANOVSKY, G. et al. Supervised open information
extraction. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers).
Anais...2018.
STEVENS, S. S. A Scale
for the Measurement of the Psychological Magnitude Pitch.
Acoustical Society of America Journal, v. 8, n. 3, p.
185, jan. 1937.
STIENNON, N. et al. Learning to summarize with human
feedback. (H. Larochelle et al., Eds.)Advances in Neural
Information Processing Systems. Anais...Curran
Associates, Inc., 2020. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf>
SU, K.-Y.; WU, M.-W.; CHANG, J.-S. A new quantitative quality
measure for machine translation systems. Proceedings of the
14th conference on Computational linguistics -.
Anais...Association for Computational Linguistics,
1992. Disponível em: <http://dx.doi.org/10.3115/992133.992137>
SUCHANEK, F. M.; KASNECI, G.; WEIKUM, G. Yago: a core of
semantic knowledge. Proceedings of the 16th international
conference on World Wide Web. Anais...2007.
SUNKARA, M. et al. Multimodal
Semi-Supervised Learning Framework for Punctuation Prediction in
Conversational Speech. Proc. Interspeech 2020.
Anais...2020.
SUNKARA, M. et al. Neural
Inverse Text Normalization. CoRR, v.
abs/2102.06380, 2021.
SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to Sequence
Learning with Neural Networks. (Z. Ghahramani et al.,
Eds.)Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. Anais...2014.
Disponível em: <https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html>
TABOADA, M.; MANN, W. C. Rhetorical structure theory: Looking back and
moving ahead. Discourse studies, v. 8, n. 3, p.
423–459, 2006.
TACHIBANA, H.; UENOYAMA, K.; AIHARA, S. Efficiently Trainable
Text-to-Speech System Based on Deep Convolutional Networks with Guided
Attention. arXiv preprint arXiv:1710.08969, 2017.
TAKAMATSU, S.; SATO, I.; NAKAGAWA, H. Reducing wrong labels in
distant supervision for relation extraction. Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Anais...2012.
TAN, K. L.; LEE, C. P.; LIM, K. M. A Survey of Sentiment Analysis:
Approaches, Datasets, and Future Research. Applied
Sciences, 2023.
TAN, X. et al. A survey on neural speech synthesis. arXiv
preprint arXiv:2106.15561, 2021.
TANAKA, E. et al. Cem Mil Podcasts: A Spoken Portuguese Document Corpus.
arXiv preprint arXiv:2209.11871, 2022.
TANG, Y. et al. Multilingual
Translation with Extensible Multilingual Pretraining and Finetuning.
CoRR, v. abs/2008.00401, 2020.
TAUS. TAUS - The
Translation Industry in 2022
Report., 2020. Disponível em: <https://info.taus.net/translation-industry-2022-report-download>.
Acesso em: 19 ago. 2020
TAYLOR, R. et al. Galactica:
A Large Language Model for Science.
CoRR, v. abs/2211.09085, 2022.
TAYLOR, W. L. “Cloze procedure”: A new tool for measuring
readability. Journalism quarterly, v. 30, n. 4, p.
415–433, 1953.
TEIXEIRA, B. H. F. Detecção automática de fronteiras prosódicas
na fala espontânea. tese de doutorado—Belo Horizonte:
Universidade Federal de Minas Gerais, 2022.
TEIXEIRA, B. H. F.; MITTMAN, M. M. Acoustic Models
for the Automatic Identification of Prosodic Boundaries in Spontaneous
Speech. Revista de Estudos da Linguagem, v. 26, n.
4, p. 1455–1488, 2018.
TEIXEIRA, B.; BARBOSA, P.; RASO, T. Automatic Detection of
Prosodic Boundaries in Brazilian Portuguese
Spontaneous Speech. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese
Language. Anais...Cham: Springer
International Publishing, 2018.
TEIXEIRA, J. P. et al. Phonetic Events from the Labeling the
European Portuguese DataBase for Speech Synthesis, FEUP/IPBDB.
Seventh European Conference on Speech Communication and Technology.
Anais...2001.
TEIXEIRA, J. P.; FREITAS, D.; FUJISAKI, H. Prediction of
Fujisaki model’s phrase commands. Eighth European Conference on
Speech Communication and Technology. Anais...2003.
TEIXEIRA, S. C. S. B.; MARENGO, S. M. D. A.; FINATTO, M. J. B. Construindo
fichas terminológicas para estudos sócio-históricos. Revista
Diálogos, v. 10, n. 3, p. 261–279, 2022.
TEIXEIRA, S. H.; ZAMORA, M. H. Pensando a interseccionalidade a partir
da vida e morte de Marielle Franco.
Dignidade Re-Vista, 2019.
TESNIÈRE, L. Eléments de Syntaxe
Structurale. Paris: Klincksieck, 1959.
THOPPILAN, R. et al. LaMDA:
Language Models for Dialog Applications. CoRR, v.
abs/2201.08239, 2022.
TIRRELL, L. Toxic Speech: Inoculations and Antidotes. The
Southern Journal of Philosophy, 2018.
TOKUDA, K. et al. Speech parameter generation algorithms for
HMM-based speech synthesis. 2000 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.
00CH37100). Anais...IEEE, 2000.
TOLLES, J.; MEURER, W. J. Logistic Regression: Relating Patient
Characteristics to Outcomes. JAMA, v. 316, n. 5, p.
533–534, 2016.
TORAL, A. et al. Attaining the Unattainable? Reassessing
Claims of Human Parity in Neural Machine Translation.
Proceedings of WMT. Anais...Brussels,
Belgium: 2018.
TORRENT, T. T. et al. Copa 2014
FrameNet Brasil: a frame-based trilingual
electronic dictionary for the Football World Cup. Proceedings
of COLING 2014, the 25th International Conference on
Computational Linguistics: System Demonstrations.
Anais...Dublin, Ireland: Dublin City University;
Association for Computational Linguistics, ago. 2014. Disponível em:
<https://aclanthology.org/C14-2003>
TORRENT, T. T.; ELLSWORTH, M. Behind the Labels: Criteria for Defining
Analytical Categories in FrameNet Brasil. Veredas-Revista de
Estudos Linguisticos, v. 17, n. 1, p. 44–66, 2013.
TOUVRON, H. et al. LLaMA: Open and
Efficient Foundation Language Models. CoRR, v.
abs/2302.13971, 2023.
TRAJANO, D.; BORDINI, R. H.; VIEIRA, R. OLID-BR: offensive language
identification dataset for Brazilian Portuguese. Language
Resources and Evaluation, 2023.
TURCHIOE, M. R. et al. Systematic review of
current natural language processing methods and applications in
cardiology. Heart, v. 108, n. 12, p. 909–916, 2022.
UCHIDA, H.; ZHU, M.; DELLA SENTA, T. A gift for a millennium.
IAS/UNU, Tokyo, 1999.
UNESCO, D. G. Recomendação sobre a Ética da Inteligência
Artificial. Disponível em: <
https://unesdoc.unesco.org/ark:/48223/pf0000381137_por >. Acesso
em: 28 ago. 2023.
UNICEF. Declaração Universal dos Direitos Humanos.
Disponível em: <
https://www.unicef.org/brazil/declaracao-universal-dos-direitos-humanos>.
Acesso em: 28 ago. 2023.
USZKOREIT, H.; LOMMEL, A. Multidimensional
Quality Metrics: A
New Unified Paradigm for
Human and Machine Translation
Quality Assessment. [s.l: s.n.].
UZÊDA, V. R.; PARDO, T. A. S.; NUNES, M. G. V. A comprehensive
comparative evaluation of RST-based summarization methods. ACM
Transactions on Speech and Language Processing (TSLP), v. 6, n.
4, p. 1–20, 2010.
VALLE, R. et al. Flowtron: an Autoregressive Flow-based Generative
Network for Text-to-Speech Synthesis. arXiv preprint
arXiv:2005.05957, 2020.
VARGAS, D. F.; VAN DER LANN, R. H. A
contribuição da terminologia na
construção de linguagens
documentárias como os tesauros. Biblos, v.
25, n. 1, p. 21–34, 2011.
VARGAS, F. et al. HateBR: A Large
Expert Annotated Corpus of Brazilian Instagram
Comments for Offensive Language and Hate Speech Detection.
Proceedings of the Thirteenth Language Resources and Evaluation
Conference. Anais...2022.
VARGAS, F. A.; PARDO, T. A. S. Aspect clustering methods for
sentiment analysis. Proceedings of International conference on
computational processing of the Portuguese language.
Anais...Springer, 2018.
VARGAS, F. A.; SANTOS, R. S. S. D.; ROCHA, P. R. Identifying
Fine-Grained Opinion and Classifying Polarity on Coronavirus
Pandemic. Proceedings of the Brazilian Conference on
Intelligent Systems. Anais...2020.
VASWANI, A. et al. Attention is All you Need. (I. Guyon
et al., Eds.)Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA.
Anais...2017. Disponível em: <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>
VEAUX, C. et al. CSTR VCTK corpus: English multi-speaker
corpus for CSTR voice cloning toolkit. University
of Edinburgh. The Centre for Speech Technology Research (CSTR),
2017.
VIEIRA, F. E.; FARACO, C. A. Texto e discurso. Escrever na
universidade. [s.l.] Parábola, 2019.
VIEIRA, R. et al. Coreference and anaphoric relations of demonstrative
noun phrases in multilingual corpus. Anaphora Processing:
linguistic, cognitive and computational modeling, p. 385–403,
2005.
VIEIRA, R.; GONÇALVES, P. N.; SOUZA, J. G. C. DE. Processamento
computacional de anáfora e correferência.
Revista de Estudos da Linguagem, v. 16, n. 1, 2012.
VILAIN, M. et al. A model-theoretic coreference scoring
scheme. Proceedings of the 6th Conference on Message
understanding. Anais...Columbia, Maryland: 1995.
VILAR, D. et al. Error Analysis of Statistical Machine
Translation Output. Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC’06). Anais...Genoa,
Italy: European Language Resources Association (ELRA), 2006. Disponível
em: <http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf>
VRANDEČIĆ, D.; KRÖTZSCH, M. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, v. 57, n. 10,
p. 78–85, 2014.
WAGNER FILHO, J. A. et al. The brWaC
Corpus: A New Open Resource for Brazilian
Portuguese. Proceedings of the Eleventh
International Conference on Language Resources and Evaluation
(LREC 2018). Anais...Miyazaki, Japan:
European Language Resources Association (ELRA), 2018. Disponível em:
<https://aclanthology.org/L18-1686>
WAGNER, J. et al. Dawn of the transformer era in speech emotion
recognition: closing the valence gap. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.
WALLIS, S. Completing Parsed
Corpora. Em: ABEILLÉ, A. (Ed.). Treebanks: Building and
Using Parsed Corpora. Dordrecht: Springer Netherlands, 2003. p.
61–71.
WANG, A. et al. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Anais...Brussels,
Belgium: Association for Computational Linguistics, nov. 2018.
Disponível em: <[2](https://aclanthology.org/W18-5446/)>
WANG, A. et al. SuperGLUE: A Stickier Benchmark for
General-Purpose Language Understanding Systems. Advances in
Neural Information Processing Systems. Anais...2019.
WANG, B.; KOMATSUZAKI, A. GPT-J-6B: A 6 Billion Parameter
Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax,
2021.
WANG, C. et al. Covost: A diverse multilingual speech-to-text
translation corpus. arXiv preprint arXiv:2002.01320,
2020.
WANG, C. et al. Voxpopuli: A large-scale multilingual speech corpus for
representation learning, semi-supervised learning and interpretation.
arXiv preprint arXiv:2101.00390, a2021.
WANG, C. et al. Neural Codec Language Models are Zero-Shot Text to
Speech Synthesizers. arXiv preprint arXiv:2301.02111,
2023.
WANG, C.; WU, A.; PINO, J. Covost 2 and massively multilingual
speech-to-text translation. arXiv preprint
arXiv:2007.10310, 2020.
WANG, L. et al. Relation classification via multi-level
attention cnns. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...2016.
WANG, W. Y.; GEORGILA, K. Automatic detection of unnatural
word-level segments in unit-selection speech synthesis. 2011
IEEE Workshop on Automatic Speech Recognition & Understanding.
Anais...IEEE, 2011.
WANG, Y. et al. Tacotron: A fully end-to-end text-to-speech synthesis
model. arXiv preprint arXiv:1703.10135, 2017.
WANG, Y. et al. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation.
(M.-F. Moens et al., Eds.)Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021. Anais...Association for Computational
Linguistics, b2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.685>
WANI, T. M. et al. A comprehensive review of speech emotion recognition
systems. IEEE Access, v. 9, p. 47795–47814, 2021.
WASSERMAN, S.; FAUST, K. Social network analysis: Methods and
applications. [s.l.] Cambridge university press, 1994.
WAY, A. Quality
Expectations of Machine Translation. Em: MOORKENS, J. et al. (Eds.).
Translation Quality Assessment: From Principles to
Practice. Cham: Springer International Publishing, 2018. p.
159–178.
WAY, A.; FORCADA, M. L. Editors’ foreword to
the invited issue on SMT and NMT.
Machine Translation, v. 32, n. 3, p. 191–194, set.
2018.
WEI, J. et al. Emergent Abilities of
Large Language Models. Trans. Mach. Learn. Res., v.
2022, b2022.
WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. NeurIPS. Anais...a2022.
Disponível em: <http://papers.nips.cc/paper\_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html>
WERBOS, P. J. Backpropagation
through time: what it does and how to do it. Proc.
IEEE, v. 78, n. 10, p. 1550–1560, 1990.
WIEGREFFE, S.; PINTER, Y. Attention is not not
Explanation. (K. Inui et al., Eds.)Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...Hong Kong, China: Association
for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1002>
WIGHTMAN, C. W.; OSTENDORF, M. Automatic recognition
of prosodic phrases. [Proceedings] ICASSP 91: 1991
International Conference on Acoustics, Speech, and Signal
Processing, v. 1, p. 321–324, 1991.
WILLIAMS, I. et al. Contextual speech recognition in end-to-end
neural network systems using beam search. 2018. Disponível em:
<https://www.isca-speech.org/archive/Interspeech_2018/pdfs/2416.pdf>
WOLF, T. et al. Transformers: State-of-the-Art Natural Language
Processing. Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
Anais...Online: Association for Computational
Linguistics, out. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.emnlp-demos.6>
WOLINSKI, F.; VICHOT, F.; DILLET, B. Automatic processing proper
names in texts. Proc. Conference on European Chapter of the
Association for Computational Linguistics.
Anais...EACL, 1995.
WU, H. et al. SemEHR: A general-purpose semantic search
system to surface semantic data from clinical notes for tailored care,
trial recruitment, and clinical research. J Am Med Inform
Assoc, v. 25, n. 5, p. 530–537, 2018.
WU, Y. et al. Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.
WU, Y. et al. Memorizing Transformers. The Tenth
International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022.
Anais...OpenReview.net, 2022. Disponível em: <https://openreview.net/forum?id=TrjbxzRcnf->
XAVIER, C. C.; LIMA, V. L. S. DE; SOUZA, M. Open information extraction
based on lexical semantics. Journal of the Brazilian Computer
Society, v. 21, n. 1, p. 1–14, 2015.
XAVIER, R. C. Português no Direito: Linguagem Forense.
Rio de Janeiro: Forense, 2002. p. 1
XIE, S. M. et al. An Explanation of In-context Learning as
Implicit Bayesian Inference. The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. Anais...OpenReview.net, 2022.
Disponível em: <https://openreview.net/forum?id=RdJVFCHjUMI>
XIONG, R. et al. On Layer Normalization in the Transformer
Architecture. Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Anais...: Proceedings of Machine Learning
Research.PMLR, 2020. Disponível em: <http://proceedings.mlr.press/v119/xiong20b.html>
XU, W.; RUDNICKY, A. Can artificial
neural networks learn language models? Proc. 6th
International Conference on Spoken Language Processing (ICSLP 2000).
Anais...2000.
XU, Y. et al. Hard Sample Aware Prompt-Tuning. (A.
Rogers, J. L. Boyd-Graber, N. Okazaki, Eds.)Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023. Anais...Association for Computational
Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.acl-long.690>
XUE, L. et al. mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer. (K. Toutanova et al.,
Eds.)Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.naacl-main.41>
YAMAGUCHI, A. et al. Frustratingly Simple Pretraining
Alternatives to Masked Language Modeling. Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing.
Anais...Online; Punta Cana, Dominican Republic:
Association for Computational Linguistics, nov. 2021. Disponível em:
<https://aclanthology.org/2021.emnlp-main.249>
YAN, M. Y.; GUSTAD, L. T.; NYTRØ, Ø. Sepsis prediction, early detection,
and identification using clinical text for machine learning: a
systematic review. J Am Med Inform Assoc, v. 29, n. 3,
p. 559–575, jan. 2022.
YANG, H. et al. Clinical Trial Classification of SNS24 Calls with Neural
Networks. Future Internet, v. 14, n. 5, p. 130, 2022.
YANG, J.-H. et al. Enriching Mandarin speech
recognition by incorporating a hierarchical prosody model. 2011
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Anais...2011. Disponível em: <https://doi.org/10.1109/ICASSP.2011.5947492>
YANG, M. et al. Learning ASR pathways: A sparse multilingual ASR
model., 2023. Disponível em: <https://arxiv.org/abs/2209.05735>
YANG, P.; FANG, H.; LIN, J. Anserini: Enabling the use of lucene
for information retrieval research. Proceedings of the 40th
international ACM SIGIR conference on research and development in
information retrieval. Anais...2017.
YANG, X. et al. An Entity-Mention Model for Coreference
Resolution with Inductive Logic Programming. Proceeding of
Association for Computational Linguistics.
Anais...2008.
YANG, Z. et al. XLNet: Generalized Autoregressive Pretraining
for Language Understanding. (H. M. Wallach et al.,
Eds.)Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada.
Anais...2019. Disponível em: <https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html>
YI, J.; TAO, J. Self-attention Based Model for Punctuation Prediction
Using Word and Speech Embeddings. ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), p. 7270–7274, 2019.
YU, X.; LAM, W. Jointly identifying entities and extracting
relations in encyclopedia text via a graphical model approach.
Coling 2010: Posters. Anais...2010.
YUAN, W.; NEUBIG, G.; LIU, P. BARTScore: Evaluating Generated
Text as Text Generation. Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual.
Anais...2021. Disponível em: <https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html>
YUAN, Y. et al. A relation-specific attention network for joint
entity and relation extraction. International joint conference
on artificial intelligence. Anais...International Joint
Conference on Artificial Intelligence, 2021.
ZE, H.; SENIOR, A.; SCHUSTER, M. Statistical parametric speech
synthesis using deep neural networks. 2013 ieee international
conference on acoustics, speech and signal processing.
Anais...IEEE, 2013.
ZELASKO, P. et al. Punctuation Prediction Model for
Conversational Speech. (B. Yegnanarayana, Ed.)Interspeech 2018,
19th Annual Conference of the International Speech Communication
Association, Hyderabad, India, 2-6 September 2018.
Anais...ISCA, 2018. Disponível em: <https://doi.org/10.21437/Interspeech.2018-1096>
ZELENKO, D.; AONE, C.; RICHARDELLA, A. Kernel methods for relation
extraction. Journal of machine learning research, v. 3,
n. Feb, p. 1083–1106, 2003.
ZEMAN, D. Reusable Tagset Conversion Using Tagset
Drivers. Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08).
Anais...Marrakech, Morocco: European Language Resources
Association (ELRA), 2008. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf>
ZEMAN, D.; RESNIK, P. Cross-Language Parser Adaptation between
Related Languages. Proceedings of the IJCNLP-08
Workshop on NLP for Less Privileged Languages.
Anais...2008. Disponível em: <https://aclanthology.org/I08-3008>
ZEN, H. et al. LibriTTS: A Corpus Derived from
LibriSpeech for Text-to-Speech. Proc. Interspeech
2019, p. 1526–1530, 2019.
ZENG, D. et al. Relation classification via convolutional deep
neural network. Proceedings of COLING 2014, the 25th
international conference on computational linguistics: technical papers.
Anais...2014.
ZEWDU, A.; YITAGESU, B. Part of speech
tagging: a systematic review of deep learning and machine learning
approaches. Journal of Big Data, v. 9, jan. 2022.
ZHANG, A. et al. Dive into Deep Learning. [s.l.]
Cambridge University Press, 2023.
ZHANG, H. The Optimality of Naive Bayes. Proceedings of
the Seventeenth International Florida Artificial Intelligence Research
Society Conference. Anais...2004.
ZHANG, S.; DUH, K.; VAN DURME, B. Mt/ie: Cross-lingual open
information extraction with neural sequence-to-sequence models.
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers.
Anais...2017.
ZHANG, T. et al. BERTScore: Evaluating Text Generation with
BERT. 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. Anais...OpenReview.net, 2020. Disponível
em: <https://openreview.net/forum?id=SkeHuCVFDr>
ZHAO, J. et al. Gender Bias in Coreference Resolution:
Evaluation and Debiasing Methods. Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). Anais...New Orleans, Louisiana:
Association for Computational Linguistics, jun. 2018. Disponível em:
<https://aclanthology.org/N18-2003>
ZHAO, S.; GRISHMAN, R. Extracting relations with integrated
information using kernel methods. Proceedings of the 43rd
annual meeting of the association for computational linguistics
(acl’05). Anais...2005.
ZHAO, W. X. et al. A
Survey of Large Language Models. CoRR, v.
abs/2303.18223, 2023.
ZHOU, C. et al. LIMA: Less
Is More for Alignment. CoRR, v. abs/2305.11206,
2023.
ZIEGLER, D. M. et al. Fine-Tuning Language Models from
Human Preferences. CoRR, v. abs/1909.08593, 2019.
ZIN, K. K. Hidden Markov model with rule based
approach for part of speech tagging of Myanmar language.
International Conference on Intelligent Cloud Computing.
Anais...2009. Disponível em: <https://api.semanticscholar.org/CorpusID:63473605>
ZOBEL, J. How reliable are the results of large-scale
information retrieval experiments? Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in
information retrieval. Anais...1998.