Referências
ABADJI, J. et al. Towards a Cleaner Document-Oriented
Multilingual Crawled Corpus. Proceedings of the Thirteenth
Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.463>
ABBOTT, B. Presuppositions and
common ground. Linguistics and philosophy, v. 31,
p. 523–538, 2008.
ABDIN, M. et al. Phi-3 Technical Report: A Highly Capable
Language Model Locally on Your Phone., 2024. Disponível em:
<https://arxiv.org/abs/2404.14219>
ABERCROMBIE, G. et al. Mirages. On Anthropomorphism in Dialogue
Systems. (H. Bouamor, J. Pino, K. Bali, Eds.)Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing.
Anais...Singapore: Association for Computational
Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.290>
ABNEY, S. P. Parsing By
Chunks. Em: BERWICK, R. C.; ABNEY, S. P.; TENNY, C. (Eds.).
Principle-Based Parsing: Computation and
Psycholinguistics. Dordrecht: Springer Netherlands, 1992. p.
257–278.
ABONIZIO, H. Q. et al. Language-Independent Fake News
Detection: English, Portuguese, and Spanish Mutual Features.
Future Internet, v. 12, n. 5, 2020.
ABREU, S. C. DE; VIEIRA, R. Relp: Portuguese open relation extraction.
KO KNOWLEDGE ORGANIZATION, v. 44, n. 3, p. 163–177,
2017.
ACHIAM, J. et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.
ACKEL, A. Abordagens digitais para estudos de Paleografia: desafios,
atualidade, desdobramentos.
LaborHistórico, v. 7, n. 3, p. 100–120,
2021.
ACOSTA, O.; VILLAVICENCIO, A.; MOREIRA, V. Identification and
Treatment of Multiword Expressions Applied to Information
Retrieval. Proceedings of the Workshop on Multiword
Expressions: from Parsing and Generation to the Real World.
Anais...Portland, Oregon, USA: Association for
Computational Linguistics, jun. 2011. Disponível em: <https://aclanthology.org/W11-0815>
AEJAS, B.; BELHI, A.; BOURAS, A. Smart Contracts
Auto-generation for Supply Chain Contexts. (F. Noël et al.,
Eds.)Product Lifecycle Management. PLM in Transition Times: The Place of
Humans and Transformative Technologies. Anais...Cham:
Springer Nature Switzerland, 2023.
AFANTENOS, S.; ASHER, N. Counter-argumentation and discourse: A
case study. Proceedings of the Workshop on Frontiers and
Connections between Argumentation Theory and Natural Language
Processing. Anais...CEUR Workshop Proceedings, 2014.
AFONSO, S. et al. Floresta sintá(c)tica: a treebank
for Portuguese. (M. G. Rodrigues, C. P. S. Araujo,
Eds.)Proceedings of the Third
International Conference on
Language Resources and Evaluation
(LREC 2002). Anais...Paris: ELRA, 2002.
AGHAJANYAN, A.; GUPTA, S.; ZETTLEMOYER, L. Intrinsic
Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning. (C. Zong et al., Eds.)Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021. Anais...Association for Computational
Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.568>
AGICHTEIN, E.; GRAVANO, L. Snowball: Extracting relations from
large plain-text collections. Proceedings of the fifth ACM
conference on Digital libraries. Anais...2000.
AGIRRE, E. Cross-Lingual Word
Embeddings. Computational Linguistics, v.
46, n. 1, p. 245–248, mar. 2020.
AGNOLONI, T. et al. Making Italian Parliamentary
Records Machine-Actionable: the Construction of the
ParlaMint-IT corpus.
Proceedings of the Workshop ParlaCLARIN III within the 13th Language
Resources and Evaluation Conference. Anais...Marseille,
France: European Language Resources Association, jun. 2022. Disponível
em: <https://aclanthology.org/2022.parlaclarin-1.17>
AHA, D. W.; KIBLER, D.; ALBERT, M. K. Instance-based learning
algorithms. Machine Learning, v. 6, n. 1, p. 37–66,
1 jan. 1991.
AHN, L. VON; KEDIA, M.; BLUM, M. Verbosity: A Game for
Collecting Common-Sense Facts. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
Anais...: CHI ’06.New York, NY, USA: Association for
Computing Machinery, 2006. Disponível em: <https://doi.org/10.1145/1124772.1124784>
AI and Ethics. Springer, 2023. Disponível em: <https://link.springer.com/journal/43681/volumes-and-issues>.
Acesso em: 7 abr. 2023
AI@META. Llama
3 Model Card. 2024.
AJAY, H. B.; TILLET, P.; PAGE, E. B. Analysis of essays by
computer (AEC-II). Storrs, CT: Univeristy of
Connecticut, 1973.
AKBIK, A. et al. Multilingual information extraction with
PolyglotIE. Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: System Demonstrations.
Anais...2016. Disponível em: <https://aclanthology.org/C16-2056/>
AKÇAY, M. B.; OĞUZ, K. Speech emotion recognition: Emotional models,
databases, features, preprocessing methods, supporting modalities, and
classifiers. Speech Communication, v. 116, p. 56–76,
2020.
ALAM, T.; KHAN, A.; ALAM, F. Punctuation Restoration using
Transformer Models for High-and Low-Resource Languages.
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT
2020). Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.wnut-1.18>
ALBUQUERQUE, G. et al. Applying event classification to reveal the
Estado da Índia. Proceedings of the International Conference on
the Computational treatment of Portuguese, PROPOR, a2024.
ALBUQUERQUE, H. et al. UlyssesNERQ:
Expanding Queries from Brazilian Portuguese
Legislative Documents through Named Entity Recognition. (P.
Gamallo et al., Eds.)Proceedings of the 16th International Conference on
Computational Processing of Portuguese - Vol. 1.
Anais...Santiago de Compostela, Galicia/Spain:
Association for Computational Lingustics, mar. b2024. Disponível em:
<https://aclanthology.org/2024.propor-1.35>
ALBUQUERQUE, H. O. et al. UlyssesNER-Br: A Corpus of Brazilian
Legislative Documents for Named Entity Recognition. (V.
Pinheiro et al., Eds.)Computational Processing of the Portuguese
Language. Anais...Cham: Springer International
Publishing, 2022. Disponível em: <https://github.com/ulysses-camara/>
ALBUQUERQUE, H. O. et al. Named entity recognition: a
survey for the portuguese language. Procesamiento del
Lenguaje Natural, a2023.
ALBUQUERQUE, H. O. et al. On the Assessment of
Deep Learning Models for Named Entity Recognition of Brazilian Legal
Documents. (N. Moniz et al., Eds.)Progress in Artificial
Intelligence. Anais...Cham: Springer Nature
Switzerland, b2023.
ALCAIM, A.; SOLEWICZ, J. A.; MORAES, J. A. DE.
Freqüência de ocorrência dos
fones e listas de frases foneticamente balanceadas no
português falado no Rio de Janeiro. Journal of
Communication and Information Systems, v. 7, n. 1, 1992.
ALEIXO, P.; PARDO, T. A. S. CSTTool: um parser multidocumento
automático para o Português do
Brasil. IV Workshop on MSc Dissertation and PhD Thesis in
Artificial Intelligence–WTDIA. Anais...c2008.
ALEIXO, P.; PARDO, T. A. S. CSTNews: um córpus de textos
jornalísticos anotados segundo a teoria discursiva multidocumento CST
(Cross-document Structure Theory. [s.l.] Universidade de São
Paulo (USP); São Carlos, SP, Brasil., b2008. Disponível em:
<http://repositorio.icmc.usp.br//handle/RIICMC/6761>.
ALEIXO, P.; PARDO, T. A. S. Uma Ferramenta Semi-automática para
Anotação de Córpus pela Teoria Discursiva Multidocumento CST.
[s.l.] Instituto de Ciências Matemáticas e de Computação, a2008.
ALENCAR, L. F. DE. Donatus: uma
interface amigável para o estudo da sintaxe formal utilizando a
biblioteca em Python do NLTK. Alfa: Revista de Linguística
(São José do Rio Preto), v. 56, n. 2, p. 523–555, jul. 2012.
ALENCAR, L. F. DE; CUCONATO, B.; RADEMAKER, A. MorphoBr:
an open source large-coverage full-form lexicon for morphological
analysis of Portuguese. Texto Livre, v. 11, n. 3,
p. 1–25, dez. 2018.
ALENCAR, R. Processos
de categorização social:
emergência de categorias sociais na fala em
interação. Revista
Investigações, v. 21, n. 2, p.
115–131, 2008.
ALENCAR, V.; ALCAIM, A. LSF and LPC-derived features for large
vocabulary distributed continuous speech recognition in Brazilian
Portuguese. 2008 42nd Asilomar Conference on Signals, Systems
and Computers. Anais...IEEE, 2008.
ALIGULIYEV, R. M. et al. COSUM: Text summarization based on clustering
and optimization. Expert Systems, v. 36, n. 1, p.
e12340, 2019.
ALIKANIOTIS, D.; YANNAKOUDAKIS, H.; REI, M. Automatic Text
Scoring Using Neural Networks. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2016.
ALISSON, S. Their god is not our god. Disponível em:
<https://www.thecontinent.org/_files/ugd/287178_73f3d2af22614e678f277b631a62e491.pdf>.
Acesso em: 11 jun. 2023.
ALLES, V. J. Construção de um
corpus para extrair entidades nomeadas do Diário Oficial da
União utilizando aprendizado supervisionado.
mathesis—[s.l.] Master’s thesis, Universidade Federal de
Brasília, 2018.
ALLWOOD, J.; TRAUM, D.; JOKINEN, K. Cooperation, dialogue and
ethics. International Journal of Human-Computer
Studies, v. 53, n. 6, p. 871–914, 2000.
ALMASI, M.; SCHIØNNING, A. Fine-Tuning GPT-3 for Synthetic
Danish News Generation. Proceedings of the 16th International
Natural Language Generation Conference. Anais...2023.
ALMEIDA, G. DE. Translating the post-editor: an investigation of
post-editing changes and correlations with professional experience
across two Romance languages. 2013. Disponível em: <https://api.semanticscholar.org/CorpusID:60255248>
ALMEIDA, P. G. R. Uma
jornada para um Parlamento inteligente: Câmara dos Deputados do
Brasil. Red Información, v. 24, 2021.
ALMOUZINI, S.; KHEMAKHEM, M.; ALAGEEL, A. Detecting Arabic
Depressed Users from Twitter Data. Procedia Computer
Science, v. 163, p. 257–265, 2019.
ALONSO, M. A. et al. Sentiment Analysis
for Fake News Detection. Electronics, v. 10, n. 11,
2021.
ALTMANN, G. T.; KAMIDE, Y. Incremental
interpretation at verbs: Restricting the domain of subsequent
reference. Cognition, v. 73, n. 3, p. 247–264,
1999.
ALTMANN, G. T.; MIRKOVIĆ, J. Incrementality
and prediction in human sentence processing. Cognitive
science, v. 33, n. 4, p. 583–609, 2009.
ALTUNYURT, L.; ORHAN, Z.; GÜNGÖR, T. A Composite Approach for
Part of Speech Tagging in
Turkish. 2006. Disponível em: <https://api.semanticscholar.org/CorpusID:9439761>
ALUÍSIO, S. et al. An Account of the Challenge of Tagging a
Reference Corpus for Brazilian Portuguese. (N. J. Mamede et
al., Eds.)Computational Processing of the Portuguese Language.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2003.
ALUÍSIO, S.; GASPERIN, C. Fostering Digital Inclusion and
Accessibility: The PorSimples project for
Simplification of Portuguese Texts. (T. Solorio,
T. Pedersen, Eds.)Proceedings of the NAACL HLT
2010 Young Investigators Workshop on Computational Approaches to
Languages of the Americas. Anais...Los
Angeles, California: Association for Computational Linguistics, jun.
2010. Disponível em: <https://aclanthology.org/W10-1607>
ALVARES, R. V.; GARCIA, A. C. B.; FERRAZ, I. STEMBR: A stemming
algorithm for the Brazilian Portuguese language. Portuguese
conference on artificial intelligence.
Anais...Springer, 2005.
AMARAL, C. et al. Priberam’s question answering system in qa@
clef 2008. Workshop of the Cross-Language Evaluation Forum for
European Languages. Anais...Springer, 2008.
AMARAL, D. O. F. DO. O reconhecimento de entidades nomeadas por
meio de conditional random fields para a lı́ngua
portuguesa. Dissertação de Mestrado, Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2013.
AMARAL, D.; VIEIRA, R. Nerp-crf: uma ferramenta para o reconhecimento de
entidades nomeadas por meio de conditional random fields.
Linguamática (Braga), 2014.
AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and
Statistical Manual of Mental Disorders 5th edition.
Arlington, VA: American Psychiatric Association, 2013.
AMORIM, E.; CANÇADO, M.; VELOSO, A. Automated Essay Scoring in
the Presence of Biased Ratings. Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Anais...Association for Computational Linguistics,
2018.
AMORIM, E.; VELOSO, A. A Multi-aspect Analysis of Automatic
Essay Scoring for Brazilian
Portuguese. Proceedings of the Student Research
Workshop at the 15th Conference of the European Chapter of
the Association for Computational Linguistics.
Anais...Valencia, Spain: Association for Computational
Linguistics, abr. 2017.
ANACLETO, J. et al. Can Common Sense uncover cultural
differences in computer applications? (M. Bramer,
Ed.)Artificial Intelligence in Theory and Practice.
Anais...Boston, MA: Springer US, 2006.
ANACLETO, J. C. et al. A Common Sense-Based On-Line Assistant
for Training Employees. (C. Baranauskas et al.,
Eds.)Human-Computer Interaction – INTERACT 2007.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.
ANANIADOU, S.; MCNAUGHT, J. Text Mining for Biology And
Biomedicine. Norwood, MA, USA: Artech House, Inc., 2005.
ANANTHAKRISHNAN, S.; NARAYANAN, S. S. Automatic Prosodic Event
Detection Using Acoustic, Lexical, and Syntactic Evidence.
IEEE Transactions on Audio, Speech, and Language
Processing, v. 16, n. 1, p. 216–228, 2008.
ANCHIÊTA, R. T. et al. PiLN IDPT 2021: Irony
Detection in Portuguese Texts with Superficial Features and
Embeddings. Proceedings of the Iberian Languages Evaluation
Forum (IberLEF 2021) co-located with the Conference of the Spanish
Society for Natural Language Processing (SEPLN 2021),
XXXVII International Conference of the Spanish Society for
Natural Language Processing., Málaga, Spain, September,
2021. Anais...2021.
ANDERSEN, P. M. et al. Automatic extraction of facts from press
releases to generate news stories. Third Conference on Applied
Natural Language Processing. Anais...1992.
ANDREW, J. J.; TANNIER, X. Automatic Extraction of
Entities and Relation from Legal Documents. Proceedings of
the Seventh Named Entities Workshop. Anais...Melbourne,
Australia: Association for Computational Linguistics, jul. 2018.
ANDROUTSOPOULOS, I.; LAMPOURAS, G.; GALANIS, D. Generating
Natural Language Descriptions from OWL Ontologies: The Natural
OWL System. Journal of Artificial Intelligence
Research, v. 48, n. 1, p. 671–715, out. 2013.
ANGELIDIS, I.; CHALKIDIS, I.; KOUBARAKIS, M. Named entity
recognition, linking and generation for greek legislation.
Legal Knowledge and Information Systems. Anais...IOS
Press, 2018.
ANSARI, L.; JI, S. Ensemble hybrid learning methods for automated
depression detection. IEEE Transactions on computational Social
Systems, 2022.
ANTONIO, J. D. Proposições
relacionais e conversação: uma
análise das relações
estabelecidas nas trocas de turno. Acta Scientiarum: Human
and social sciences, v. 25, p. 59, 2003.
ANTUNES, I. Lutar com palavras: coesão e
coerência. [s.l.] Parábola, 2007.
ANTUNES, I. Textualidade: noções
básicas e implicações
pedagógicas. [s.l.] Editora: Parábola Editorial,
2017.
APPELT, D. E. Problem Solving Applied to Language
Generation. Proceedings of the 18th Annual Meeting on
Association for Computational Linguistics. Anais...:
ACL’80.Philadelphia, Pennsylvania: Association for Computational
Linguistics, 1980. Disponível em: <https://doi.org/10.3115/981436.981455>
ARAGÓN, M. E. et al. Detecting Depression in
Social Media using Fine-Grained Emotions.
NAACL-2019. Anais...Minneapolis,
USA: Association for Computational Linguistics, 2019.
ARAUJO, P. H. L. DE et al. LeNER-Br: A Dataset for Named Entity
Recognition in Brazilian Legal Text. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2018.
Disponível em: <https://github.com/peluz/lener-br>
ARDILA, R. et al. Common voice: A massively-multilingual speech corpus.
arXiv preprint arXiv:1912.06670, 2019.
AREVALO, E. M.; FONTEYN, L. MacBERTh: Development and Evaluation
of a Historically Pre-trained Language Model for English
(1450-1950). ICON Workshop on Natural Language Processing for
Digital Humanities. Anais...2021.
ARFÉ, B.; MASON, L.; FAJARDO, I. Simplifying informational text
structure for struggling readers. Read Writ (2018) Volume 31,
Issue 9, p. 2191–2210, 2018.
ARORA, A. K. A. A. S. A. A. Anxious Depression Prediction in
Real-time Social Data. International Conference on Advances in
Engineering Science Management & Technology.
Anais...Dehradun, India: 2019.
Artificial
intelligence and human rights. 1. ed. [s.l.] Dykinson,
S.L., 2021.
ASAHARA, M.; MATSUMOTO, Y. Japanese named entity extraction with
redundant morphological analysis. Proceedings of the 2003 human
language technology conference of the North American chapter of the
association for computational linguistics.
Anais...2003.
ASCHBRENNER, K. A. et al. A survey of online and mobile technology use
at peer support agencies. Psychiatric Quarterly, p.
1–10, 2018.
ASHER, N. et al. Discourse structure and dialogue acts in
multiparty dialogue: the STAC corpus. 10th International
Conference on Language Resources and Evaluation (LREC 2016).
Anais...2016.
ASHER, N.; LASCARIDES, A. Logics of conversation.
[s.l.] Cambridge University Press, 2003.
ASHER, N.; VIEU, L. Subordinating and coordinating discourse relations.
Lingua, v. 115, n. 4, p. 591–610, 2005.
ASSI, F. M. et al. UFSCar’s Team at ABSAPT 2022:
Using Syntax, Semantics and Context for Solving the Tasks.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
AUER, S. et al. DBpedia: A Nucleus for a Web of Open
Data. (K. Aberer et al., Eds.)The Semantic Web.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.
AVANÇO, L. V.; NUNES, M. DAS G. V. Lexicon-Based Sentiment
Analysis for Reviews of Products in Brazilian Portuguese.
Proceedings of the 2014 Brazilian Conference on Intelligent Systems.
Anais...2014.
AVELAR, M.; FERRARI, L. Integração
experiencial e dêixis locativa: O papel discursivo dos
gestos. Cadernos de Estudos
Linguı́sticos, v. 59, n. 1, p. 73–89, 2017.
AVERINA, M.; LEVANOVA, O.; KASATKINA, N. Named Entity
Recognition for Russian Judicial Rulings Text. 2022 32nd
Conference of Open Innovations Association (FRUCT).
Anais...2022.
AZEVEDO, R. R. DE. Um sistema de
diálogo inteligente baseado em lógica de
descrições. tese de
doutorado—[s.l.] Universidade Federal de Pernambuco, 2015.
AZIZ, W.; SPECIA, L. Fully Automatic Compilation of a
Portuguese-English Parallel Corpus for Statistical Machine
Translation. STIL 2011. Anais...Cuiabá, MT:
2011.
AZZIMONTI, M.; FERNANDES, M. Social media
networks, fake news, and polarization. European Journal of
Political Economy, v. 76, p. 102256, 2023.
BAADER, F. et al. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge, Reino Unido:
Cambridge University Press, 2003.
BACH, N. X. et al. Reference Extraction from
Vietnamese Legal Documents. Proceedings of the 10th
International Symposium on Information and Communication Technology.
Anais...: SoICT ’19.New York, NY, USA: Association for
Computing Machinery, 2019.
BÄCKSTRÖM, T. et al. Introduction to Speech
Processing. 2. ed. [s.l: s.n.].
BADENE, S. et al. Learning Multi-party Discourse Structure Using
Weak Supervision. 25th International conference on
computational linguistics and intellectual technologies (Dialogue 2019).
Anais...2019.
BAEVSKI, A. et al. wav2vec 2.0: A Framework for Self-Supervised
Learning of Speech Representations., 2020. Disponível em:
<https://arxiv.org/abs/2006.11477>
BAEZA-YATES, R. A.; RIBEIRO-NETO, B. A. Modern Information Retrieval-the
concepts and technology behind search. 2011.
BAEZA-YATES, R.; RIBEIRO-NETO, B.
Recuperação de
Informação-: Conceitos e Tecnologia das
Máquinas de Busca. [s.l.] Bookman Editora, 2013.
BAGGA, A.; BALDWIN, B. Algorithms for Scoring Coreference
Chains. Proceedings of the first International Conference on
Language Resources and Evaluation Workshop on Linguistics Coreference.
Anais...Granada, Spain: 1998.
BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by
Jointly Learning to Align and Translate. (Y. Bengio, Y. LeCun,
Eds.)3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Anais...San Diego, California.:
2015. Disponível em: <http://arxiv.org/abs/1409.0473>
BAKER, C. F.; FILLMORE, C. J.; LOWE, J. B. The
Berkeley FrameNet
Project. 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on
Computational Linguistics, Volume 1. Anais...Montreal,
Quebec, Canada: Association for Computational Linguistics, ago. 1998.
Disponível em: <https://aclanthology.org/P98-1013>
BAKER, C.; FELLBAUM, C.; PASSONNEAU, R. Semantic Annotation of MASC. Em:
Handbook of Linguistic Annotation. [s.l.] Springer
Netherlands, 2017. p. 699–717.
BALAGE FILHO, P. P.; PARDO, T. A. S.; ALUÍSIO, S. M. An
Evaluation of the Brazilian Portuguese LIWC Dictionary for Sentiment
Analysis. Proceedings of the 9th Brazilian Symposium in
Information and Human Language Technology.
Anais...2013.
BALAGE FILHO, P. P.; PARDO, T. A. S.; NUNES, M. DAS G. V.
Sumarização automática de textos científicos: Estudo de caso com
o sistema gistsumm. [s.l.] Instituto de Ciências Matemáticas e
de Computação da Universidade de São Paulo, 2007.
BALDWIN, T.; KIM, S. N. Multiword Expressions. Em: INDURKHYA, N.;
DAMERAU, F. J. (Eds.). Handbook of Natural Language
Processing. 2. ed. Boca Raton, FL, USA: CRC Press, Taylor;
Francis Group, 2010. p. 267–292.
BANARESCU, L. et al. Abstract Meaning
Representation for Sembanking. Proceedings of the
7th Linguistic Annotation Workshop and Interoperability with Discourse.
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, 2013. Disponível em: <http://aclweb.org/anthology/W13-2322>
BANERJEE, S.; LAVIE, A. METEOR: An Automatic Metric
for MT Evaluation with Improved Correlation with Human
Judgments. (J. Goldstein et al., Eds.)Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization.
Anais...Ann Arbor, Michigan: Association for
Computational Linguistics, jun. 2005. Disponível em: <https://aclanthology.org/W05-0909>
BANKO, M. et al. Open Information Extraction from the
Web. Proceedings of the 20th International Joint Conference on
Artifical Intelligence. Anais...: IJCAI’07.San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. Disponível
em: <http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9909B5C03DA1A3CCFFF4263898B69100?doi=10.1.1.74.5174&rep=rep1&type=pdf>
BANSAL, N.; AGARWAL, C.; NGUYEN, A. SAM: The Sensitivity of
Attribution Methods to Hyperparameters. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Anais...2020. Disponível em: <https://doi.org/10.1109/CVPRW50498.2020.00009>
BANZA, A. P. A edição digital da História do Futuro, de António
Vieira: arquivo e ferramentas. Actas da Jornada de Humanidades
Digitais do CIDEHUS (to appear). Anais...2022.
BAPTISTA, J.; HAGÈGE, C.; MAMEDE, N. Identificação,
classificação e normalização de expressões temporais do português:
A experiência do Segundo HAREM e
o futuro. Em: MOTA, C.; SANTOS, D. (Eds.).
Desafios na avaliação conjunta do reconhecimento de
entidades mencionadas. [s.l.] Linguateca, 2008. p. 33–54.
BAPTISTA, J.; MAMEDE, N.; REIS, S. Support Verb Constructions
across the Ocean Sea. (A. Bhatia et al., Eds.)Proceedings of
the 18th Workshop on Multiword Expressions @LREC2022.
Anais...Marseille, France: European Language Resources
Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.mwe-1.6>
BARBOSA, G. C. G.; GLAUBER, R.; CLARO, D. B. Classificação de
Relações Abertas Utilizando Features Independentes do Idioma.
Proceedings of the 4th Symposium on Knowledge Discovery, Mining and
Learning (KDMiLe). Anais...SBC, 2016.
BARRAULT, L. et al. Findings of the 2019 Conference on
Machine Translation (WMT19). Proceedings of
WMT. Anais...Florence, Italy: 2019.
BARRAULT, L. et al. Findings of the 2020 Conference on Machine
Translation (WMT20). Proceedings of the Fifth
Conference on Machine Translation. Anais...Online:
Association for Computational Linguistics, nov. 2020. Disponível em:
<https://www.aclweb.org/anthology/2020.wmt-1.1>
BARREIRA, R.; PINHEIRO, V.; FURTADO, V.
FrameFOR – Uma Base de
Conhecimento de Frames Semânticos para
Perı́cias de Informática
(FrameFOR - a Knowledge Base of Semantic
Frames for Digital Forensics)[In Portuguese].
Proceedings of the 11th Brazilian Symposium in Information
and Human Language Technology.
Anais...Uberlândia, Brazil: Sociedade
Brasileira de Computação, out. 2017.
Disponível em: <https://aclanthology.org/W17-6620>
BARREIRO, A. et al. When Multiwords Go Bad in Machine
Translation. MT Summit workshop Proceedings on Multi-word
Units in Machine Translation and Transla tion Technology, p.
10, 2013.
BARRETT, M. J.; AGIC, Z.; SØGAARD, A. The Dundee Treebank.
Proceedings of the Fourteenth International Workshop on
Treebanks and Linguistic Theories: TLT14, p. 242–248, 2015.
BARRIERE, V.; FOURET, A. May I Check Again?
— A simple but efficient way to generate and use contextual
dictionaries for Named Entity Recognition. Application to
French Legal Texts. Proceedings of the 22nd Nordic
Conference on Computational Linguistics. Anais...Turku,
Finland: Linköping University Electronic Press, 2019.
Disponível em: <https://aclanthology.org/W19-6136>
BARROS, D. L. P. DE. Procedimentos e
recursos discursivos da conversação.
Estudos de lı́ngua falada:
variações e confrontos, v. 3, p. 47,
1999.
BARROS, D. L. P. DE. Introdução à Linguística II: princípios de análise.
Em: FIORIN, J. L. (Ed.). 5. ed. São Paulo: Contexto, 2021. p. 187–219.
BARROS, T. S. Um modelo BERT para sumarização extrativa de
textos em documentos da Polícia Federal. mathesis—[s.l.]
(Mestrado em Ciências da Computação) - Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Campina Grande, 2022.
BARZILAY, R.; ELHADAD, N.; MCKEOWN, K. Sentence ordering in
multidocument summarization. Proceedings of the first
international conference on Human language technology research.
Anais...2001.
BARZILAY, R.; LAPATA, M. Collective Content Selection for
Concept-to-text Generation. Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Language
Processing. Anais...: HLT’05.Vancouver, British
Columbia, Canada: Association for Computational Linguistics, 2005.
Disponível em: <https://doi.org/10.3115/1220575.1220617>
BARZILAY, R.; LAPATA, M. Aggregation via Set Partitioning for
Natural Language Generation. Proceedings of the Main Conference
on Human Language Technology Conference of the North American Chapter of
the Association of Computational Linguistics. Anais...:
HLT-NAACL’06.New York, New York: Association for Computational
Linguistics, 2006. Disponível em: <https://doi.org/10.3115/1220835.1220881>
BASILE, V. et al. It’s the end of the gold standard as we know
it. On the impact of pre-aggregation on the evaluation of highly
subjective tasks. CEUR Workshop Proceedings.
Anais...CEUR-WS, 2020. Disponível em: <https://iris.unito.it/handle/2318/1770149>
BASILE, V. et al. We Need to Consider Disagreement in
Evaluation. Proceedings of the 1st Workshop on Benchmarking:
Past, Present and Future. Anais...Online: Association
for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.bppf-1.3>
BASSO, R. M. A Semântica das
Relações Anafóricas entre
Eventos. tese de doutorado—[s.l.] Universidade Estadual de
Campinas, SP, 2009.
BATES, M. et al. Research in Knowledge
Representation for Natural Language Understanding: Bolt, Beranek, and
Newman. SIGART Bull., n. 79, p. 30–31, jan. 1982.
BATISTA, C.; DIAS, A. L.; NETO, N. Free resources for
forced phonetic alignment in Brazilian
Portuguese based on Kaldi toolkit.
EURASIP Journal on Advances in Signal Processing, v.
2022, n. 1, p. 11, 19 fev. 2022.
BATISTA, H. H. et al. A comparative analysis
of text embedding approach to extract named entities in Portuguese legal
documents. Anais do XVIII Encontro Nacional de
Inteligência Artificial e Computacional.
Anais...SBC, 2021.
BAVELAS, J. B. et al. Interactive
gestures. Discourse Processes, v. 15, n. 4, p.
469–489, 1992.
BAVELAS, J. B. Face-to-face dialogue: theory, research, and
applications. [s.l.] Oxford University Press, 2022.
BAVELAS, J. B.; COATES, L.; JOHNSON, T. Listener
responses as a collaborative process: The role of gaze.
Journal of communication, v. 52, n. 3, p. 566–580,
2002.
BAVELAS, J. B.; GERWING, J. Conversational hand
gestures and facial displays in face-to-face dialogue. Em:
Social communication. [s.l.] Psychology Press, 2007. p.
283–308.
BAXENDALE, P. B. Machine-made index for technical literature—an
experiment. IBM Journal of research and development, v.
2, n. 4, p. 354–361, 1958.
BAYYARAPU, H. S. Efficient algorithm for Context Sensitive
Aggregation in Natural Language generation. Proceedings of the
International Conference Recent Advances in Natural Language Processing.
Anais...: RANLP’11.Hissar, Bulgaria: Association for
Computational Linguistics, 2011. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/R/R11/R11-1012.pdf>
BEATTIE, G. W. Sequential Temporal
Patterns of Speech and Gaze in Dialogue. Semiotica,
v. 23, n. 1/2, 1978.
BECKMAN, M. E.; HIRSCHBERG, J.; SHATTUCK-HUFNAGEL, S. The
original ToBI system and the evolution of the
ToBI framework. Em: JUN, S.-A. (Ed.). Prosodic
typology: the phonology of intonation and phrasing. Oxford:
Oxford University Press, 2005. p. 9–54.
BEJČEK, E.; STRAŇÁK, P.; PECINA, P. Syntactic Identification of
Occurrences of Multiword Expressions in Text using a Lexicon with
Dependency Structures. Proceedings of the 9th Workshop on
Multiword Expressions. Anais...Atlanta, Georgia, USA:
Association for Computational Linguistics, jun. 2013. Disponível em:
<https://aclanthology.org/W13-1016>
BELINKOV, Y.; GLASS, J. Analysis Methods in Neural
Language Processing: A Survey. Transactions of the
Association for Computational Linguistics, v. 7, p. 49–72,
2019.
BELTAGY, I.; PETERS, M. E.; COHAN, A. Longformer: The Long-Document
Transformer. CoRR, v. abs/2004.05150, 2020.
BELZ, A. Last
Words: That’s Nice ... What Can You Do With It?
Computational Linguistics, v. 35, n. 1, mar. 2009.
BELZ, A. et al. A Systematic Review of Reproducibility Research
in Natural Language Processing. Proceedings of the 16th
Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. Anais...Online: Association
for Computational Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.29>
BELZ, A. A Metrological
Perspective on Reproducibility in NLP*.
Computational Linguistics, v. 48, n. 4, p. 1125–1135,
dez. 2022.
BELZ, A. et al. Non-Repeatable Experiments and Non-Reproducible
Results: The Reproducibility Crisis in Human Evaluation in
NLP. Findings of the Association for Computational
Linguistics: ACL 2023. Anais...Toronto, Canada:
Association for Computational Linguistics, jul. a2023. Disponível em:
<https://aclanthology.org/2023.findings-acl.226>
BELZ, A.; THOMSON, C.; REITER, E. Missing Information,
Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing
the Reproducibility of Previous Human Evaluations in
NLP. The Fourth Workshop on Insights from Negative
Results in NLP. Anais...Dubrovnik, Croatia: Association
for Computational Linguistics, b2023. Disponível em: <https://aclanthology.org/2023.insights-1.1>
BENDER, E. M. Linguistic Fundamentals
for Natural Language Processing: 100 Essentials from Morphology and
Syntax. Springer Nature Switzerland AG 2013: Springer Cham,
1959. p. XVII–166
BENDER, E. M. Linguistically Naïve != Language
Independent: Why NLP Needs Linguistic Typology.
Proceedings of the EACL 2009 Workshop on the Interaction
between Linguistics and Computational Linguistics: Virtuous, Vicious or
Vacuous? Anais...Athens, Greece: Association for
Computational Linguistics, mar. 2009. Disponível em: <https://www.aclweb.org/anthology/W09-0106>
BENDER, E. M. The Power of Linguistics - Unpacking Natural
Language Processing Ethics with Emily M. Bender. [Podcast].
Disponível em: <https://www.radicalai.org/e16-emily-bender>.
Acesso em: 7 abr. 2023.
BENDER, E. M. et al. On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big? 🦜. Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency.
Anais...: FAccT ’21.New York, NY, USA: Association for
Computing Machinery, 2021. Disponível em: <https://doi.org/10.1145/3442188.3445922>
BENDER, E. M. You Are Not a Parrot And a chatbot is not a human.
And a linguist named Emily M. Bender is very worried what will happen
when we forget this. Disponível em: <https://nymag.com/intelligencer/article/ai-artificial-intelligence-chatbots-emily-m-bender.html>.
Acesso em: 9 abr. 2023.
BENDER, E. M. Resisting
Dehumanization in the Age of “AI”. Current
Directions in Psychological Science, v. 0, n. 0, p.
09637214231217286, 2024.
BENDER, E. M.; FRIEDMAN, B. Data Statements for Natural
Language Processing: Toward Mitigating System Bias and Enabling Better
Science. Transactions of the Association for Computational
Linguistics, v. 6, p. 587–604, 2018.
BENDER, E. M.; KOLLER, A. Climbing towards NLU:
On Meaning, Form, and Understanding in the Age of
Data. Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Anais...Online:
Association for Computational Linguistics, jul. 2020. Disponível em:
<https://aclanthology.org/2020.acl-main.463>
BENGIO, Y. et al. A Neural Probabilistic Language Model. J.
Mach. Learn. Res., v. 3, n. null, p. 1137–1155, mar. 2003.
BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, v. 35, n. 8, p. 1798–1828, 2013.
BENNETT, A. Interruptions and the interpretation of
conversation. Annual Meeting of the Berkeley Linguistics
Society. Anais...1978. Disponível em: <https://doi.org/10.1080/01638538109544513>
BENOTTI, L.; BLACKBURN, P. Grounding as a Collaborative
Process. Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume.
Anais...Online: Association for Computational
Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.41>
BERG-KIRKPATRICK, T.; BURKETT, D.; KLEIN, D. An Empirical
Investigation of Statistical Significance in NLP.
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning.
Anais...Jeju Island, Korea: Association for
Computational Linguistics, jul. 2012. Disponível em: <https://aclanthology.org/D12-1091>
BERNARDO, S. Episódio
e evento na organização tópica da
conversa informal. Soletras, v. 1, p. 34–49, 2001.
BERNARDO, S. Então
e agora na conversa informal. Soletras, v. 5-6, p.
65–81, 2003.
BERNARDO, S. Papel das
formas O? H e O? H em turnos
conversacionais. Revista do GELNE, v. 7, n. 1/2, p.
73–88, 2005.
BERNARDO, S. P. Foco
e ponto de vista na organização
conversacional. Pesquisas em Lingüística e Literatura:
Descrição, Aplicação, Ensino - ISBN: 85-906478-0-3, 2002.
BERNARDO, S. P.; VELOZO, N. DE A.; ABREU, J. C. DE. Espaços
mentais na conceptualização de conversa: dois modelos em análise.
Revista do GELNE, v. 23, n. 1, p. 201–216, 2021.
BERNSEN, N. O.; DYBKJÆR, H.; DYBKJÆR, L. Cooperativity in
human-machine and human-human spoken dialogue. Discourse
processes, v. 21, n. 2, p. 213–236, 1996.
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Exploring Word
Embeddings for Unsupervised Textual User-Generated Content
Normalization. Proceedings of the 2nd Workshop on Noisy
User-generated Text (WNUT). Anais...Osaka,
Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em:
<https://aclanthology.org/W16-3916>
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Normalização textual de
conteúdo gerado por usuário. mathesis—[s.l.] Universidade de
São Paulo, 2017.
BERTOLDI, A. Os Limites da Criação
Automática de Léxicos Computacionais Baseados
em Frames: Um Estudo Contrastivo do Frame Criminal_process
(The Limits of the Automatic Creation of Frame-based Computational
Lexicons: a Contrastive Study of the Criminal_process
Frame) [in Portuguese]. Proceedings of the 8th
Brazilian Symposium in Information and Human Language
Technology. Anais...2011. Disponível em: <https://aclanthology.org/W11-4510>
BERTSCH, A. et al. Unlimiformer:
Long-Range Transformers with Unlimited Length Input.
CoRR, v. abs/2305.01625, 2023.
BERWICK, R. C.; CHOMSKY, N. Por que apenas nós?
Linguagem e evolução. [s.l.]
SciELO-Editora UNESP, 2017.
BHARDWAJ, S.; AGGARWAL, S.; MAUSAM, M. CaRB: A crowdsourced
benchmark for open IE. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...2019.
BIANCHI, F.; HOVY, D. On the Gap between Adoption and
Understanding in NLP. Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021.
Anais...Online: Association for Computational
Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.findings-acl.340>
BIBAL, A. et al. Is Attention Explanation? An Introduction to
the Debate. Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Dublin, Ireland: Association for Computational
Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.acl-long.269>
BICK, E. The Parsing
System "Palavras": Automatic Grammatical Analysis of Portuguese in a
Constraint Grammar Framework. tese de doutorado—[s.l.]
Aarhus University Press, Denmark; University of Arhus, 2000.
BICK, E. A dependency-based approach to anaphora
annotation. Proceedings of th 9th International Conference on
Computational Processing of the Portuguese Language.
Anais...Porto Alegre, Brazil: 2010.
BICK, E. S. PFN-PT:
A Framenet Annotator for Portuguese: Anotação semântica automática: um
novo Framenet para o português. Domínios de
Linguagem, v. 16(4)7, p. 1401–1435, 2009.
BIDERMAN, M. T. C. Teoria linguística:
linguística quantitativa e computacional. Rio de
Janeiro: Martins Fontes, 1978.
BIKEL, D. M.; SCHWARTZ, R.; WEISCHEDEL, R. M. An algorithm that learns
what’s in a name. Machine learning, v. 34, p. 211–231,
1999.
BIRD, S. NLTK: the natural language toolkit.
Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions.
Anais...2006.
BIRD, S. Decolonising Speech and Language Technology.
Proceedings of the 28th International Conference on Computational
Linguistics. Anais...Barcelona, Spain (Online):
International Committee on Computational Linguistics, dez. 2020.
Disponível em: <https://aclanthology.org/2020.coling-main.313>
BIRD, S.; LOPER, E. NLTK: The Natural Language
Toolkit. Proceedings of the ACL Interactive Poster
and Demonstration Sessions. Anais...Barcelona, Spain:
Association for Computational Linguistics, jul. 2004. Disponível em:
<https://aclanthology.org/P04-3031>
BIRON, T. et al. Automatic detection
of prosodic boundaries in spontaneous speech. PLoS
ONE, v. 16, n. 5, p. 1–21, maio 2021.
BITTENCOURT JR., J. A. S. Avaliação
automática de redação em língua
portuguesa empregando redes neurais profundas. mathesis—[s.l.]
Universidade Federal de Goiás, 2020.
BIZER, C. et al. DBpedia: A crystallization point for the
Web of Data. Web Semantics, 2009.
BLACKBURN, P.; BOS, J. Representation and Inference for Natural
Language: A First Course in Computational Semantics. [s.l.]
Center for the Study of Language; Information, 2005.
BLEI, D. M.; MORENO, P. J. Topic Segmentation with an Aspect
Hidden Markov Model. Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval. Anais...New
York, NY, USA: Association for Computing Machinery, 2001.
BLOM, J. D. A dictionary of hallucinations. [s.l.]
Springer, 2010.
BOBROW, D. G. et al. GUS, a frame-driven
dialog system. Artificial Intelligence, v. 8, n. 2,
p. 155–173, 1977.
BOERSMA, P.; WEENINK, D. Praat: doing phonetics by computer
[Computer program]. Version 6.3.10.,
2023. Disponível em: <http://www.praat.org/>
BOGANTES, D. et al. Towards Lexical Encoding of Multi-Word
Expressions in Spanish Dialects. Proceedings of
the Tenth International Conference on Language Resources and Evaluation
(LREC’16). Anais...Portorož,
Slovenia: European Language Resources Association (ELRA), 2016.
Disponível em: <https://aclanthology.org/L16-1358>
BOITO, M. Z. Simplificação lexical de substantivos e multiword
expressions. Salão de Iniciação Científica (26. : 2014 out.
20-24 : UFRGS, Porto Alegre, RS), 2014.
BOJANOWSKI, P. et al. Enriching Word Vectors with Subword Information.
Transactions of the Association for Computational
Linguistics, v. 5, p. 135–146, 2017.
BOJAR, O. et al. Findings of the 2016 Conference on
Machine Translation. Proceedings of the First Conference
on Machine Translation. Anais...Berlin, Germany:
Association for Computational Linguistics, 2016.
BOMMASANI, R.; CARDIE, C. Intrinsic evaluation of summarization
datasets. Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Anais...2020.
BOND, F.; FOSTER, R. Linking and extending an open multilingual
wordnet. Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-1133>
BOND JR., C. F.; DEPAULO, B. M. Accuracy of Deception Judgments.
Personality and Social Psychology Review, v. 10, n. 3,
p. 214–234, 2006.
BONIFACIO, L. H. et al. A Study on the
Impact of Intradomain Finetuning of Deep Language Models for Legal Named
Entity Recognition in Portuguese. (R. Cerri, R. C. Prati,
Eds.)Intelligent Systems. Anais...Cham: Springer
International Publishing, 2020.
BONIFACIO, L. H. et al. mMARCO: A Multilingual Version of MS
MARCO Passage Ranking Dataset., 2021. Disponível em: <https://arxiv.org/abs/2108.13897>
BONIFACIO, L. H. N. Modelos
Profundos de Linguagem para Reconhecimento de Entidades Nomeadas em
Domínio Jurídico. mathesis—[s.l.] Master’s thesis,
Universidade Federal de Mato Grosso do Sul, 2020.
BORDINO, I. et al. Garnlp:
a natural language processing pipeline for garnishment documents.
Information Systems Frontiers, v. 23, p. 101–114, 2021.
BORIN, E.; DONATO, F. Financial Sustainability of Digitizing Cultural
Heritage: The International Platform Europeana. Journal of Risk
and Financial Management, v. 16, n. 10, p. 421, 2023.
BOS, J. et al. Survey of existing interactive systems. Trindi
(Task Oriented Instructional Dialogue) report, v. D1, p. 3,
1999.
BOTELHO, J. M. Conversação:
Mudança e desvio de tópico conversacional.
Revista Philologus, v. 17, n. 50, 2011.
BOTT, S. et al. GhoSt-PV:
A Representative Gold Standard of German Particle
Verbs. (M. Zock, A. Lenci, S. Evert, Eds.)Proceedings of the
5th Workshop on Cognitive Aspects of the Lexicon
(CogALex - V). Anais...Osaka,
Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em:
<https://aclanthology.org/W16-5318>
BOUAMOR, D.; SEMMAR, N.; ZWEIGENBAUM, P. Identifying
bilingual Multi-Word Expressions for Statistical Machine
Translation. (N. C. (Conference. Chair) et al.,
Eds.)Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12).
Anais...Istanbul, Turkey: European Language Resources
Association (ELRA), maio 2012.
BOUAYAD-AGHA, N. et al. Content selection from semantic web
data. INLG 2012 Proceedings of the Seventh International
Natural Language Generation Conference. Anais...2012.
BOWMAN, S. R. et al. A large annotated corpus for learning
natural language inference. Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing.
Anais...Lisbon, Portugal: Association for Computational
Linguistics, set. 2015. Disponível em: <https://aclanthology.org/D15-1075>
BOXER, D. Applying sociolinguistics: Domains and face-to-face
interaction. [s.l.] John Benjamins Publishing, 2002. v. 15
BRAGGAAR, A. et al. Evaluating
Task-oriented Dialogue Systems: A Systematic Review of Measures,
Constructs and their Operationalisations. arXiv preprint
arXiv:2312.13871, 2023.
BRANDES, N. et al. ProteinBERT: a
universal deep-learning model of protein sequence and function.
Bioinform., v. 38, n. 8, p. 2102–2110, 2022.
BRANDOM, R. B. Articulating Reasons: An Introduction to
Inferentialism. Cambridge, Massachusetts, EUA: Harvard
University Press, 2001.
BRANDT, M. B. Modelagem
da informação legislativa: arquitetura da
informação para o processo legislativo
brasileiro. tese de doutorado—[s.l.] Universidade Estadual
Paulista (Unesp), 2020.
BRASCHLER, M.; PETERS, C. CLEF 2002 Methodology and
Metrics. Em: PETERS, C. (Ed.). Advances in
Cross-Language Information Retrieval: Results of the CLEF 2002
Evaluation Campaign. [s.l.] Springer, 2003. p. 512–525.
BRASCHLER, M.; PETERS, C. Cross-Language Evaluation Forum:
Objectives, Results, Achievements. Information
Retrieval, v. 7, n. 1-2, p. 7–31, 2004.
BRAUDE, D. A.; SHIMODAIRA, H.; YOUSSEF, A. B. Template-warping
based speech driven head motion synthesis. Interspeech.
Anais...2013.
BRAUN, H. I. Understanding Scoring Reliability: Experiments in
Calibrating Essay Readers. Journal of Educational
Statistics, v. 13, n. 1, p. 1–18, 1988.
BREEN, J. JMdict: a
Japanese-Multilingual Dictionary. Proceedings of
the Workshop on Multilingual Linguistic Resources.
Anais...Geneva, Switzerland: COLING, 2004. Disponível
em: <https://aclanthology.org/W04-2209>
BREITFELLER, L. et al. Finding Microaggressions in the Wild: A
Case for Locating Elusive Phenomena in Social Media Posts.
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP).
Anais...2019.
BRENNAN, S. E.; GALATI, A.; KUHLEN, A. K. Two minds, one
dialog: Coordinating speaking and understanding. Em:
Psychology of learning and motivation. [s.l.] Elsevier,
2010. v. 53p. 301–344.
BREWSTER, C.; WILKS, Y. Ontologies, taxonomies,
thesauri:learning from texts. (M. Deegan, Ed.)Proceedings of
Use of Computational Linguistics in the Extraction of Keyword
Information from Digital Library Content Workshop.
Anais...2004. Disponível em: <http://www.cbrewster.com/papers/KeyWord_FMO.pdf>
BRICIU, A.; LUPEA, M. Studying the language
of mental illness in Romanian social media.
IEEE 14th International Conference on Intelligent Computer
Communication and Processing (ICCP). Anais...2018.
BRIDGEMAN, B. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 221–232.
BRILL, E. A Simple
Rule-Based Part of
Speech Tagger. Proceedings of the
Third Conference on Applied Natural Language Processing.
Anais...: ANLC ’92.USA: Association for Computational
Linguistics, 1992. Disponível em: <https://doi.org/10.3115/974499.974526>
BRIN, S. Extracting patterns and relations from the world wide
web. International workshop on the world wide web and
databases. Anais...Springer, 1998.
BRITO, M. et al. CDJUR-BR - Uma Coleção Dourada do Judiciário
Brasileiro com Entidades Nomeadas Refinadas. Anais do XIV
Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2023. Disponível
em: <https://github.com/mauriciobritojr/CDJUR-BR>
BRITTO, H.; FINGER, M.; GALVES, C. Computational and linguistic aspects
of the construction of The Tycho Brahe Parsed Corpus of Historical
Portuguese. Romanistische Korpuslinguistik, Korpora und
gesprochene Sprache, Romance Corpus Linguistics, Corpora and Spoken
Language, ScriptOralia, v. 126., 2002.
BROWN, P. et al. A statistical approach to language
translation. Proceedings of the 12th conference on
Computational linguistics -.
Anais...Budapest, Hungry: Association for Computational
Linguistics, 1988. Disponível em: <http://portal.acm.org/citation.cfm?doid=991635.991651>.
Acesso em: 10 jun. 2020
BROWN, T. B. et al. Language Models are Few-Shot
Learners. (H. Larochelle et al., Eds.)Advances in Neural
Information Processing Systems. Anais...Curran
Associates, Inc., 2020. Disponível em: <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>
BRUM, H.; NUNES, M. DAS G. V. Building a Sentiment Corpus
of Tweets in Brazilian Portuguese. (N. C. (Conference
chair) et al., Eds.)Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018).
Anais...Miyazaki, Japan: European Language Resources
Association (ELRA), mar. 2018.
BRUNEAU, T. J. Communicative
silences: Forms and functions. Journal of
communication, v. 23, n. 1, p. 17–46, 1973.
BRUNETTE, M. et al. Use of smartphones, computers and social media among
people with SMI: opportunity for intervention. Community Mental
Health Journal, p. 1–6, 2019.
BUCCI, S.; SCHWANNAUER, M.; BERRY, N. The digital revolution and its
impact on mental health care. Psychology and Psychotherapy:
Theory, Research and Practice, v. 92, n. 2, p. 277–297, 2019.
BUCKLEY, C.; VOORHEES, E. Evaluating Evaluation Measure
Stability. Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval. Anais...2000. Disponível em: <https://sigir.org/wp-content/uploads/2017/06/p235.pdf>
BUCKLEY, C.; VOORHEES, E. M. Evaluating evaluation measure
stability. ACM SIGIR Forum. Anais...ACM New
York, NY, USA, 2017.
BUENO, R. O. et al. Overview of the Task on Irony Detection in
Spanish Variants. Proceedings of the Iberian Languages
Evaluation Forum co-located with 35th Conference of the Spanish Society
for Natural Language Processing. Anais...2019.
BULHÕES, J. DO S. U. et al. Levantamento,
análise e descrição de elementos
paralinguı́sticos do português
espontâneo. mathesis—[s.l.] Universidade
Federal do Pará, 2006.
BUOLAMWINI, J.; GEBRU, T. Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification. (S. A.
Friedler, C. Wilson, Eds.)Proceedings of the 1st Conference on Fairness,
Accountability and Transparency. Anais...: Proceedings
of Machine Learning Research.PMLR, 2018. Disponível em: <https://proceedings.mlr.press/v81/buolamwini18a.html>
BURDISSO, S. G.; ERRECALDE, M.; MONTES-Y-GÓMEZ, M. t-SS3: a text
classifier with dynamic n-grams for early risk detection over text
streams. Pattern Recognition Letters, v.
138, p. 130–137, 2020.
BURRISS, L. L. Attribution in network radio news: A cross-network
analysis. Journalism Quarterly, v. 65, n. 3, p.
690–694, 1988.
BURSTEIN, J. Opportunities for Natural Language Processing
Research in Education. (A. Gelbukh, Ed.)Computational
Linguistics and Intelligent Text Processing.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2009.
BUTNARIU, C. et al. SemEval-2 Task 9:
The Interpretation of Noun Compounds Using Paraphrasing Verbs and
Prepositions. Proceedings of the 5th International Workshop on
Semantic Evaluation. Anais...Uppsala, Sweden:
Association for Computational Linguistics, jul. 2010. Disponível em:
<https://aclanthology.org/S10-1007>
CABRAL, B.; SOUZA, M.; CLARO, D. B. PortNOIE: A Neural Framework
for Open Information Extraction for the Portuguese Language.
International Conference on Computational Processing of the Portuguese
Language. Anais...Springer, 2022.
CABRAL, L. et al. FakeWhastApp.BR:
NLP and Machine Learning Techniques for Misinformation
Detection in Brazilian Portuguese WhatsApp Messages.
Proceedings of the 23rd International Conference on Enterprise
Information Systems (ICEIS 2021) - Volume 1.
Anais...2021.
CABRÉ, M. T. La terminología:
representación y comunicación. [s.l.]
Editora: Documenta Universitaria, 1999.
CABRÉ, M. T. A Terminologia, uma disciplina em
evolução: passado, presente e alguns elementos
de futuro. Debate Terminológico. ISSN:
1813-1867, n. 01, 2005.
CABRERA-DIEGO, L. A.; GHEEWALA, A. Jus Mundi at
SemEval-2023 Task 6: Using a Frustratingly
Easy Domain Adaption for a Legal Named Entity Recognition
System. Proceedings of the 17th International Workshop on
Semantic Evaluation (SemEval-2023). Anais...Toronto,
Canada: Association for Computational Linguistics, jul. 2023.
CAÇÃO, F. N. et al. DEEPAGÉ: Answering Questions in
Portuguese About the Brazilian Environment. (A. Britto, K.
Valdivia Delgado, Eds.)Intelligent Systems.
Anais...Cham: Springer International Publishing, 2021.
CAFFERKEY, C.; HOGAN, D.; GENABITH, J. VAN. Multi-word units in
treebank-based probabilistic parsing and generation. Proc. of
RANLP 2007. Anais...Borovets: 2007.
CALLISON-BURCH, C. et al. Findings of the 2010 joint workshop on
statistical machine translation and metrics for machine
translation. Proceedings of the Joint Fifth Workshop on
Statistical Machine Translation and MetricsMATR.
Anais...2010.
CALZOLARI, N. et al. Towards best Practice for Multiword
Expressions in Computational Lexicons. proc of the Third
lrecconf (LREC 2002). Anais...Las Palmas, Canary
Islands, Spain: elra, 2002.
CAMERON, H. F.; GONÇALVES, M. F.; QUARESMA, P. Linguistic and
orthographical classic Portuguese variants Challenges for
NLP. Proceedings of the 14th International
Conference on the Computational Processing of Portuguese.
Anais...2020.
CAMERON, H.; OLIVAL, F.; VIEIRA, R. Planear a normalização
automática: tipologia de variação gráfica do corpus das Memórias
Paroquiais (1758). LaborHistórico, v. 9, n. 1, p.
52234, 2023.
CAMPOS, J. et al. Towards Fully Automated News Reporting in
Brazilian Portuguese. Anais do XVII Encontro Nacional de
Inteligência Artificial e Computacional. Anais...Porto
Alegre, RS, Brasil: SBC, 2020. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/12158>
CAMPRESS (ED.). Cambridge International Dictionary of Phrasal
Verbs. Cambridge, UK: campress, 1997.
CANDIDO JUNIOR, A. Análise bidirecional da língua na
simplificação sintática em textos de português voltada à acessibilidade
digital. ICMC - USP São Carlos: Biblioteca Digital USP, 2013.
CANDIDO JUNIOR, A. et al. CORAA: a large
corpus of spontaneous and prepared speech manually validated for speech
recognition in Brazilian Portuguese. CoRR, v.
abs/2110.15731, 2021.
CANDIDO JUNIOR, A. et al. CORAA
ASR: a large corpus of spontaneous and prepared speech manually
validated for speech recognition in Brazilian
Portuguese. Language Resources &
Evaluation, 2022.
CANDIDO-JUNIOR, A.; OLIVEIRA, M. DE; ALUÍSIO, S. M. Simplifica: um
Sistema Web de Autoria de Textos Simplificados. Simpósio
Brasileiro de Sistemas Multimídia e Web (Webmedia 2009) v.2, p.
55–58, 2009.
CANDITO, M. et al. A
French corpus annotated for multiword expressions and named
entities. Journal of Language Modelling, v. 8, n.
2, p. 415–479, 2021.
CANDITO, M.; CONSTANT, M. Strategies for Contiguous Multiword
Expression Analysis and Dependency Parsing. Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Anais...Baltimore, Maryland:
Association for Computational Linguistics, jun. 2014. Disponível em:
<https://aclanthology.org/P14-1070>
CAP, F. et al. How to Produce Unseen Teddy Bears: Improved
Morphological Processing of Compounds in SMT.
Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics (EACL).
Anais...Goteborg, Sweden: 2014.
CARAPINHA, C.; PLAG, C. A interação
verbal em sala de audiências: turn design. Actas
do XIII Congreso Internacional de Lingüı́stica
Xeral: Vigo, 13-15 de xuño de 2018.
Anais...Universidade de Vigo, 2018. Disponível em:
<http://cilx2018.uvigo.gal/actas/pdf/661468.pdf>
CARDELLINO, C. et al. Legal NERC with ontologies,
Wikipedia and curriculum learning. Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers.
Anais...Valencia, Spain: Association for Computational
Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/E17-2041>
CARDOSO, N. Avaliação
de Sistemas de Reconhecimento de
Entidades Mencionadas.
mathesis—[s.l.] Faculdade de Engenharia da Universidade do Porto, 2006.
CARDOSO, N. Rembrandt - a named-entity recognition
framework. Proceedings of the Eighth International Conference
on Language Resources and Evaluation. Anais...Istanbul,
Turkey: 2012. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2012/summaries/409.html>
CARDOSO, P. C. F. et al. CSTNews-a discourse-annotated corpus
for single and multi-document summarization of news texts in Brazilian
Portuguese. Proceedings of the 3rd RST Brazilian Meeting.
Anais...2011.
CARDOSO, P. C. F. Exploração de métodos de sumarização
automática multidocumento com base em conhecimento
semântico-discursivo. tese de doutorado—[s.l.] (Doutorado em
Ciências de Computação e Matemática Computacional) - Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, 2014.
CARL, M.; WAY, A. (EDS.). Recent
Advances in Example-Based
Machine Translation. [s.l.]
Springer Netherlands, 2003.
CARLSON, L.; MARCU, D. Discourse tagging reference manual. ISI
Technical Report ISI-TR-545, v. 54, n. 2001, p. 56, 2001.
CARMO, D. et al. PTT5: Pretraining
and validating the T5 model on Brazilian Portuguese
data. CoRR, v. abs/2008.09144, 2020.
CARNEIRO, F. C. A. D. F. A. F. J. N. A. V. Early Detection of Depression:
Social Network Analysis and Random Forest Techniques. J Med
Internet Res, v. 21, n. 6, p. e12554, 2019.
CARPINETO, C.; ROMANO, G. A survey of automatic query expansion in
information retrieval. Acm Computing Surveys (CSUR), v.
44, n. 1, p. 1–50, 2012.
CARPUAT, M.; DIAB, M. Task-based Evaluation of Multiword
Expressions: a Pilot Study in Statistical Machine
Translation. Proceedings of HLT: The 2010 Annual
Conference of the North American Chapter of the ACL (NAACL 2003).
Anais...Los Angeles, California: ACL, jun. 2010.
CARROLL, J. et al. Practical Simplification of English Newspaper
Text to Assist Aphasic Readers. In Proc. of AAAI-98 Workshop on
Integrating Artificial Intelligence and Assistive Technology.
Anais...1998.
CARVALHO, F.; SANTOS, G. DOS; GUEDES, G. P. AffectPT-br: an
Affective Lexicon based on LIWC 2015. Proceedings of the 37th
International Conference of the Chilean Computer Science Society.
Anais...2018.
CARVALHO, G.; MATOS, D. M. DE; ROCIO, V. IdSay: Question
Answering for Portuguese. (C. Peters et al., Eds.)Evaluating
Systems for Multilingual and Multimodal Information Access.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
a2009.
CARVALHO, M. W. P. L.; ACIOLI, M. D. Entre falas
simultâneas, tomadas de turno e
sobreposição de vozes: quem tem a palavra no
debate? Revista do GELNE, v. 19, p. 155–165, 2017.
CARVALHO, P. et al. Clues for Detecting Irony in User-Generated
Contents: Oh...!! It’s "so Easy" ;-). Proceedings of the 1st
International CIKM Workshop on Topic-Sentiment Analysis for Mass
Opinion. Anais...b2009.
CARVALHO, P.; SILVA, M. J. SentiLex-PT 02.
https://b2share.eudat.eu, 2017. Disponível em: <https://b2share.eudat.eu/records/93ab120efdaa4662baec6adee8e7585f>
CASANOVA, E. Síntese de voz aplicada ao português
brasileiro usando aprendizado profundo. {B.S.} thesis—[s.l.]
Universidade Tecnológica Federal do Paraná,
2019.
CASANOVA, E. et al. TTS-Portuguese
Corpus: a corpus for speech synthesis in
Brazilian Portuguese. Language
Resources and Evaluation, v. 56, n. 3, p. 1043–1055, 2022.
CASANOVA, E.; SHULBY, C. D.; ALUÍSIO, S. M. Deep learning approaches for
speech synthesis and speaker verification. Acoustic
communication: an interdisciplinary approach, 2021.
CASELI, H. DE M. et al. Building a Brazilian Portuguese parallel corpus
of original and simplified texts. Advances in Computational
Linguistics, Research in Computer Science (CICLing-2009), v.
41, p. 59–70, 2009.
CASELI, H. DE M.; FREITAS, C.; VIOLA, R. Processamento
de Linguagem Natural. Em: Tópicos em Gerenciamento de Dados
e Informações: Minicursos do SBBD 2022. [s.l.] Sociedade
Brasileira de Computação, 2022. p. 1–28.
CÁSSIA ALVES, V. DE et al. College
students-in-the-loop for their mental health: a case of AI and humans
working together to support well-being. Interaction Design
and Architecture(s), n. 59, p. 79–94, 2024.
CASTANO, A.; CASACUBERTA, F. A connectionist approach to machine
translation. 5th European Conference on Speech Communication
and Technology (Eurospeech 1997). Anais...ISCA, set.
1997. Disponível em: <http://dx.doi.org/10.21437/eurospeech.1997-50>
CASTILHO, A. T. DE. O português culto falado no Brasil:
história do Projeto NURC. Em: PRETI, D.;
URBANO, H. (Eds.). A linguagem falada culta na cidade de
São Paulo. São Paulo, SP:
TAQ/Fapesp, 1990. v. 4 – Estudosp. 141–292.
CASTILHO, A. T. DE. Gramática do
Português Brasileiro: fundamentos, perspectivas. Cadernos de
Linguística, v. 2, n. 1, p. e252, abr. a2021.
CASTILHO, S. et al. Does post-editing increase usability? A
study with Brazilian Portuguese as Target Language. Proceedings
of the 17th annual conference of the European association for machine
translation. Anais...2014.
CASTILHO, S. et al. A comparative quality evaluation of PBSMT
and NMT using professional translators. Proceedings of Machine
Translation Summit XVI: Research Track. Anais...a2017.
CASTILHO, S. et al. Is Neural
Machine Translation the New
State of the Art? The Prague
Bulletin of Mathematical Linguistics, v. 108, n. 1, p. 109–120,
jun. b2017.
CASTILHO, S. et al. Approaches to Human and Machine Translation
Quality Assessment. Em: Translation Quality
Assessment: From Principles to Practice. Machine
Translation: Technologies e Applications. [s.l.] Springer International
Publishing, 2018. v. 1p. 9–38.
CASTILHO, S. et al. Editors’ foreword to
the special issue on human factors in neural machine translation.
Machine Translation, v. 33, n. 1–2, p. 1–7, maio a2019.
CASTILHO, S. On the Same Page? Comparing IAA in
Sentence and Document Level Human MT Evaluation. Proceedings of
the Fifth Conference on Machine Translation.
Anais...Association for Computational Linguistics, nov.
2020. Disponível em: <https://www.aclweb.org/anthology/2020.wmt-1.137>
CASTILHO, S. Towards Document-Level Human MT
Evaluation: On the Issues of Annotator Agreement, Effort and
Misevaluation. Proceedings of the Workshop on Human Evaluation
of NLP Systems. Anais...Association for Computational
Linguistics, abr. b2021. Disponível em: <https://www.aclweb.org/anthology/2021.humeval-1.4>
CASTILHO, S. et al. DELA Corpus - A Document-Level
Corpus Annotated with Context-Related Issues. Proceedings of
the Sixth Conference on Machine Translation.
Anais...Online: Association for Computational
Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.wmt-1.63>
CASTILHO, S. How Much Context Span is Enough? Examining
Context-Related Issues for Document-level MT. Proceedings of
the Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.323>
CASTILHO, S. et al. Translation Systems Care for Context? What
About a GPT Model? Proceedings of the 24th Annual Conference of
the European Association for Machine Translation.
Anais...Tampere, Finland: EAMT, 2023. Disponível em:
<https://events.tuni.fi/uploads/2023/06/11678752-proceedings-eamt2023.pdf>
CASTILHO, S.; RESENDE, N. Post-Editese in Literary Translations.
Information, v. 13, n. 2, p. 66, 2022.
CASTILHO, S.; RESENDE, N.; MITKOV, R. What Influences the
Features of Post-editese? A Preliminary Study. Proceedings of
the Human-Informed Translation and Interpreting Technology Workshop
(HiT-IT 2019). Anais...Varna, Bulgaria: Incoma Ltd.,
Shoumen, Bulgaria, set. b2019. Disponível em: <https://aclanthology.org/W19-8703>
CASTRO FERREIRA, T. et al. NeuralREG: An end-to-end approach to
referring expression generation. Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Anais...Melbourne, Australia: Association for
Computational Linguistics, 2018. Disponível em: <http://aclweb.org/anthology/P18-1182>
CASTRO FERREIRA, T. et al. Neural data-to-text generation: A
comparison between pipeline and end-to-end architectures.
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP).
Anais...Hong Kong, China: Association for Computational
Linguistics, nov. 2019. Disponível em: <https://www.aclweb.org/anthology/D19-1052>
CASTRO FERREIRA, T. et al. Evaluating Recognizing Question
Entailment Methods for a Portuguese Community
Question-Answering System about Diabetes Mellitus. (R. Mitkov,
G. Angelova, Eds.)Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2021).
Anais...Held Online: INCOMA Ltd., set. 2021. Disponível
em: <https://aclanthology.org/2021.ranlp-1.28>
CASTRO FERREIRA, T.; PARABONI, I. Referring Expression Generation:
Taking Speakers’ Preferences into Account. Em: SOJKA, P. et al. (Eds.).
Text, Speech and Dialogue. Lecture Notes em Computer
Science. [s.l.] Springer International Publishing, 2014a. v. 8655p.
539–546.
CASTRO FERREIRA, T.; PARABONI, I. Classification-based Referring
Expression Generation. Computational Linguistics and
Intelligent Text Processing (CICLing-2014), Lecture
Notes in Computer Science 8403.
Anais...Kathmandu, Nepal: Springer, b2014.
CASTRO, P. Aprendizagem
profunda para reconhecimento de entidades nomeadas em domínio
jurídico. mathesis—[s.l.] Master’s thesis, Universidade
Federal de Goiás, 2019.
CASTRO, P. V. Q. DE; SILVA, N. F. F. DA; SOARES, A. DA S.
Portuguese Named Entity Recognition Using
LSTM-CRF. (A. Villavicencio et al.,
Eds.)Proceedings of the 13th International Conference on the
Computational Processing of the Portuguese Language.
Anais...2018.
CAVALIERE, P.; ROMEO, G. From Poisons to Antidotes:
Algorithms as Democracy Boosters. European Journal of Risk
Regulation, v. 13, n. 3, p. 421–442, 2022.
CERVONE, A.; STEPANOV, E.; RICCARDI, G. Coherence Models for
Dialogue. Proc. Interspeech 2018.
Anais...2018. Disponível em: <https://10.21437/Interspeech.2018-2446>
ÇETINDAĞ, C.; YAZICIOĞLU, B.; KOÇ, A. Named-entity
recognition in Turkish legal texts. Natural Language
Engineering, p. 1–28, 2022.
CHAKRABORTY, A. et al. Stop Clickbait: Detecting and preventing
clickbaits in online news media. 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM).
Anais...2016.
CHALAMALASETTI, K. et al. clembench: Using Game Play to Evaluate
Chat-Optimized Language Models as Conversational Agents. (H.
Bouamor, J. Pino, K. Bali, Eds.)Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing.
Anais...Singapore: Association for Computational
Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.689>
CHALKIDIS, I. et al. LEGAL-BERT:
The Muppets straight out of Law School. Findings of the
Association for Computational Linguistics: EMNLP 2020.
Anais...Online: Association for Computational
Linguistics, nov. 2020.
CHALKIDIS, I. et al. Regulatory
Compliance through Doc2Doc Information
Retrieval: A case study in EU/UK legislation
where text similarity has limitations. Proceedings of the
16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume. Anais...Online:
Association for Computational Linguistics, abr. 2021.
CHALKIDIS, I.; ANDROUTSOPOULOS, I. A deep learning
approach to contract element extraction. Em: Legal knowledge
and information systems. [s.l.] IOS Press, 2017. p. 155–164.
CHALKIDIS, I.; ANDROUTSOPOULOS, I.; ALETRAS, N. Neural Legal Judgment
Prediction in English. Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2019.
CHALKIDIS, I.; ANDROUTSOPOULOS, I.; MICHOS, A. Extracting Contract
Elements. Proceedings of the 16th Edition of the
International Conference on Articial Intelligence and Law.
Anais...: ICAIL ’17.New York, NY, USA: Association for
Computing Machinery, 2017.
CHALL, J. S.; DALE, E. Readability revisited: the new Dale-Chall
readability formula. [s.l.] Brookline Books, 1995.
CHALMERS, D. J. Syntactic transformations on distributed
representations. Connectionist Natural Language Processing:
Readings from Connection Science, p. 46–55, 1992.
CHANDRAN, R. Indigenous groups in NZ, US fear colonisation as AI
learns their languages. Disponível em: <https://www.context.news/ai/nz-us-indigenous-fear-colonisation-as-bots-learn-their-languages>.
Acesso em: 7 abr. 2023.
CHANDRASEKAR, R.; DORAN, C.; SRINIVAS, B. Motivations and methods for
text simplification. Proceedings of the 16th International
Conference on Computational Linguistics (COLING), p. 1041–1044,
1996.
CHANG, K.-W. et al. Illinois-Coref: The UI system in the
CoNLL-2012 shared task. Joint Conference on EMNLP and
CoNLL-Shared Task. Anais...Association for
Computational Linguistics, 2012.
CHARLES, A. C.; RUBACK, L.; OLIVEIRA, J. Fakepedia Corpus: A
Flexible Fake News Corpus in Portuguese. Computational
Processing of the Portuguese Language: 15th International Conference,
PROPOR 2022, Fortaleza, Brazil, March 21–23, 2022, Proceedings.
Anais...Berlin, Heidelberg: Springer-Verlag, 2022.
Disponível em: <https://doi.org/10.1007/978-3-030-98305-5_4>
CHARPENTIER, F.; STELLA, M. Diphone synthesis using an
overlap-add technique for speech waveforms concatenation.
ICASSP’86. IEEE International Conference on Acoustics, Speech, and
Signal Processing. Anais...IEEE, 1986.
CHAVARRO, J. et al. FakeTrueBR: Um corpus
brasileiro de notícias falsas. Anais da XVIII Escola Regional
de Banco de Dados. Anais...Porto Alegre, RS, Brasil:
SBC, 2023. Disponível em: <https://sol.sbc.org.br/index.php/erbd/article/view/24352>
CHE, X. et al. Punctuation Prediction for Unsegmented Transcript
Based on Word Vector. Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16).
Anais...Portorož, Slovenia: European
Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1103>
CHEN, A.; CHEN, D. O. Simulation of a machine learning enabled learning
health system for risk prediction using synthetic patient data.
Scientific Reports, v. 12, n. 1, p. 17917, out. 2022.
CHEN, K.; HASEGAWA-JOHNSON, M. A. How prosody improves word
recognition. Speech Prosody 2004.
Anais...2004.
CHEN, L.-W.; RUDNICKY, A. Exploring Wav2vec 2.0 Fine Tuning for
Improved Speech Emotion Recognition. ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Anais...IEEE, 2023.
CHEN, P. P. The
Entity-Relationship Model - Toward a Unified View of Data.
ACM Trans. Database Syst., v. 1, n. 1, p. 9–36, 1976.
CHEN, Y. et al. Joint Entity and
Relation Extraction for Legal Documents with Legal Feature
Enhancement. Proceedings of the 28th International
Conference on Computational Linguistics.
Anais...Barcelona, Spain (Online): International
Committee on Computational Linguistics, dez. 2020.
CHEN, Y.; CONROY, N. J.; RUBIN, V. L. Misleading Online Content:
Recognizing Clickbait as "False News". Proceedings of the 2015
ACM on Workshop on Multimodal Deception Detection.
Anais...: WMDD ’15.New York, NY, USA: Association for
Computing Machinery, 2015. Disponível em: <https://doi.org/10.1145/2823465.2823467>
CHILD, R. et al. Generating
Long Sequences with Sparse Transformers. CoRR, v.
abs/1904.10509, 2019.
CHINCHOR, N. The statistical significance of the MUC-4
results. Proceedings of the Fourth Message
Understanding Conference (MUC-4). Anais...Morgan
Kaufmann Publ., 1992. Disponível em: <https://dl.acm.org/doi/pdf/10.3115/1072064.1072068>
CHISHOLM, A.; RADFORD, W.; HACHEY, B. Learning to generate
one-sentence biographies from Wikidata. Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. Anais...:
EACL’17.Valencia, Spain: Association for Computational Linguistics,
2017. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1060.pdf>
CHO, K. et al. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine
Translation. (A. Moschitti, B. Pang, W. Daelemans,
Eds.)Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL. Anais...ACL, 2014.
Disponível em: <https://doi.org/10.3115/v1/d14-1179>
CHOUDHURY, M. D. et al. Predicting Depression via Social
Media. International AAAI Conference on Web and Social
Media (ICWSM). Anais...AAAI, 2013.
CHOUEKA, Y. Looking for Needles in a Haystack or Locating
Interesting Collocational Expressions in Large Textual
Databases. (C. Fluhr, D. E. Walker, Eds.)Proceedings of the 2nd
International Conference on Computer-Assisted Information Retrieval
(Recherche d’Information et ses Applications - RIA 1988).
Anais...Cambridge, MA, USA: CID, 1988.
CHOVIL, N. Discourse-oriented
facial displays in conversation. Research on Language &
Social Interaction, v. 25, n. 1-4, p. 163–194, 1991.
CHOWDHERY, A. et al. PaLM: Scaling Language
Modeling with Pathways. CoRR, v. abs/2204.02311,
2022.
CHRISMAN, L. Learning recursive distributed representations for holistic
computation. Connection Science, v. 3, n. 4, p.
345–366, 1991.
CHRISTIANO, P. F. et al. Deep Reinforcement Learning from Human
Preferences. (I. Guyon et al., Eds.)Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. Anais...2017. Disponível em: <https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html>
CHUNG, Y.-A.; GLASS, J. Speech2Vec:
A Sequence-to-Sequence Framework for Learning Word Embeddings from
Speech. Proc. Interspeech 2018.
Anais...2018.
CHURCH, K. How many multiword expressions do people know? tslp
Special Issue on mwes: from theory to practice and use, part 1
(TSLP), v. 10, n. 2, 2013.
CIAMPAGLIA, G. L. et al. Computational fact checking from knowledge
networks. PloS one, v. 10, n. 6, p. e0128193, 2015.
CIERI, C.; MILLER, D.; WALKER, K. The Fisher Corpus: a Resource
for the Next Generations of Speech-to-Text. Proceedings of the
Fourth International Conference on Language Resources and Evaluation
(LREC’04). Anais...Lisbon,
Portugal: European Language Resources Association (ELRA), 2004.
Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/767.pdf>
CIGNARELLA, A. T. et al. Overview of the EVALITA
2018 Task on Irony Detection in Italian Tweets (IronITA).
Proceedings of the Sixth Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final Workshop
(EVALITA 2018) co-located with the Fifth Italian Conference
on Computational Linguistics (CLiC-it 2018).
Anais...2018.
CLARK, E. V. Conversational
repair and the acquisition of language. Discourse
Processes, v. 57, n. 5-6, p. 441–459, 2020.
CLARK, H. H. Arenas
of language use. [s.l.] University of Chicago Press, 1992.
CLARK, H. H. Using
language. [s.l.] Cambridge University Press, 1996b.
CLARK, H. H. Communities, commonalities, and communication. Em:
Rethinking linguistic relativity. [s.l.] Cambridge
University Press, 1996a. v. 17p. 324–355.
CLARK, H. H. How to
talk with children. Em: Language in Interaction.
[s.l.] John Benjamins, 2014. p. 333–352.
CLARK, H. H.; BRENNAN, S. E. Grounding in communication.
Em: Perspectives on socially shared cognition. [s.l.]
American Psychological Association, 1991. p. 127–149.
CLARK, H. H.; SCHAEFER, E. F. Collaborating on
contributions to conversations. Language and cognitive
processes, v. 2, n. 1, p. 19–41, 1987.
CLARK, H. H.; TREE, J. E. F. Using uh and um in
spontaneous speaking. Cognition, v. 84, n. 1, p.
73–111, 2002.
CLARK, H. H.; WILKES-GIBBS, D. Referring as a
collaborative process. Cognition, v. 22, n. 1, p.
1–39, 1986.
CLARK, K. et al. ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators. 8th
International Conference on Learning Representations, ICLR
2020. Anais...Addis Ababa, Ethiopia: OpenReview.net,
abr. 2020. Disponível em: <https://openreview.net/forum?id=r1xMH1BtvB>
CLARKE, D. J. B. et al. FAIRshake: Toolkit to
Evaluate the FAIRness of Research Digital Resources. Cell
Systems, v. 9, n. 5, p. 417–421, 2019.
CLEM, S. Post-Truth and Vices Opposed to Truth. v. 37, n. 2, p. 97–116,
2017.
CLERWALL, C. Enter the Robot
Journalist. Journalism Practice, v. 8, n. 5, p.
519–531, 2014.
CLIFTON, A. et al. 100,000 podcasts: A spoken English document
corpus. Proceedings of the 28th International Conference on
Computational Linguistics. Anais...2020.
COECKELBERGH, M. Artificial
Intelligence, Responsibility Attribution, and a Relational Justification
of Explainability. Science and Engineering Ethics,
v. 26, p. 2051–2068, 2020.
COELHO DA SILVA, T.; FERNANDES DE MACÊDO, J.; MAGALHÃES, R.
Tracking the Evolution of Covid-19 Symptoms through Clinical
Conversations. Proceedings of the 5th Clinical Natural Language
Processing Workshop. Anais...Toronto, Canada:
Association for Computational Linguistics, jul. 2023. Disponível em:
<https://aclanthology.org/2023.clinicalnlp-1.6>
COELHO, G. et al. Information Extraction
in the Legal Domain: Traditional Supervised Learning vs.
ChatGPT. INSTICC; SciTePress, 2024.
COELHO, G. E.; SERRALHEIRO, A. J.; NETO, J. P. A spoken dialog
system speech interface based on a microphone array.
Computational Processing of the Portuguese Language: 8th International
Conference, PROPOR 2008 Aveiro, Portugal, September 8-10, 2008
Proceedings 8. Anais...Springer, 2008. Disponível em:
<https://doi.org/10.1007/978-3-540-85980-2_3>
COELLO, J. M. A.; JUNQUEIRA, B. A. Automatic Analysis of Facebook Posts
and Comments Written in Brazilian Portuguese. International
Journal for Innovation Education and Research, 2019.
COHAN, A. et al. SMHD: a Large-Scale Resource for
Exploring Online Language Usage for Multiple Mental Health
Conditions. COLING-2018.
Anais...Santa Fe, USA: Association for
Computational Linguistics, 2018.
COHEN, A. D. et al. LaMDA: Language Models for Dialog Applications. Em:
arXiv. [s.l: s.n.].
COHEN, J. A
Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, v. 20, n. 1, p. 37–46, 1960.
COHEN, K. B. et al. Three Dimensions of Reproducibility in
Natural Language Processing. Proceedings of the Eleventh
International Conference on Language Resources and Evaluation
(LREC 2018). Anais...Miyazaki, Japan:
European Language Resources Association (ELRA), 2018. Disponível em:
<https://aclanthology.org/L18-1025>
COHEN, P. R.; HOWE, A. E. How Evaluation Guides AI
Research: The Message Still Counts More than the Medium. AI
Magazine, v. 9, n. 4, p. 35, 1988.
COLEMAN, M.; LIAU, T. L. A computer readability formula designed for
machine scoring. Journal of Applied Psychology, v. 60,
p. 283–284, 1975.
COLLOBERT, R.; WESTON, J. A unified architecture for natural
language processing: deep neural networks with multitask
learning. (W. W. Cohen, A. McCallum, S. T. Roweis, Eds.)Machine
Learning, Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008.
Anais...: ACM International Conference
Proceeding Series.ACM, 2008. Disponível em: <https://doi.org/10.1145/1390156.1390177>
COLLOVINI, S. et al. Summ-it: Um Corpus Anotado com Informações
Discursivas Visando a Sumarização Automática.
Proceedings of V Workshop em Tecnologia da Informação e da Linguagem
Humana. Anais...Rio de Janeiro, Brasil: 2007.
COLLOVINI, S. et al. Extraction of Relation Descriptors for
Portuguese Using Conditional Random Fields. Proceedings of the
14th Ibero-American Conference on Advances in Artificial Intelligence.
Anais...Santiago de Chile: 2014.
COLLOVINI, S. et al. IberLEF 2019 Portuguese Named Entity
Recognition and Relation Extraction Tasks.
Proceedings of the Iberian Languages Evaluation Forum co-located
with 35th Conference of the Spanish Society for Natural Language
Processing. Anais...2019. Disponível em: <http://ceur-ws.org/Vol-2421/NER\_Portuguese\_overview.pdf>
COMMISSION, E. Proposal for a Regulation laying down harmonised
rules on artificial intelligence. Disponível em: <
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
>. Acesso em: 28 ago. 2023.
CONCEIÇÃO, M. C.; ZANOLA, M. T. Terminologia e
mediação linguı́stica:
métodos, práticas e atividades.
Universidade do Algarve Editora, 2020.
CONEGLIAN, C. S.; SANTAREM SEGUNDO, J. E. Europeana no
Linked Open Data: conceitos de Web Semântica na dimensão aplicada das
Humanidades Digitais. Encontros Bibli: revista eletrônica de
biblioteconomia e ciência da informação, v. 22, n. 48, p.
88–99, 2017.
CONNEAU, A. et al. Unsupervised cross-lingual representation
learning at scale. Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.
Anais...2020.
CONNEAU, A.; LAMPLE, G. Cross-Lingual Language Model Pretraining. Em:
Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2019.
CONROY, N. K.; RUBIN, V. L.; CHEN, Y. Automatic
deception detection: Methods for finding fake news.
Proceedings of the Association for Information Science and
Technology, v. 52, n. 1, p. 1–4, 2015.
CONSOLI, B. S. et al. Embeddings for Named Entity Recognition in
Geoscience Portuguese Literature. Proceedings of The 12th
Language Resources and Evaluation Conference.
Anais...2020.
CONSORTIUM, L. D. ACE (Automatic Content Extraction)
English Annotation Guidelines for Events. Version, n.
5.4.3, 2005.
CONSTANT, M. et al. Multiword Expression
Processing: A Survey. Computational
Linguistics, 2017.
CONSTANT, M.; NIVRE, J. A Transition-Based System for Joint
Lexical and Syntactic Analysis. Proc. of ACL 2016.
Anais...Berlin: 2016.
COPESTAKE, A. et al. Minimal recursion semantics: An introduction.
Research on language and computation, v. 3, p. 281–332,
2005.
COPPERSMITH, G. et al. CLPsych 2015 Shared Task:
Depression and PTSD on Twitter. Second Workshop on
Computational Linguistics and Clinical Psychology: From Linguistic
Signal to Clinical Reality. Anais...Denver,
USA: Association for Computational Linguistics, 2015.
CORDEIRO, P. R.; PINHEIRO, V. Um corpus de notıcias
falsas do twitter e verificaçao automática de
rumores em lıngua portuguesa. Proceedings of the
Symposium in Information and Human Language Technology.
Anais...2019.
CORDEIRO, S. R. et al. Unsupervised
Compositionality Prediction of Nominal Compounds.
Computational Linguistics, v. 45, n. 1, p. 1–57, 2019.
COREIXAS, T. Resolução De Correferência E Categorias De
Entidades Nomeadas. Dissertação de Mestrado, Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2010.
CORMEN, T. et al. Introduction to Algorithms. Em: 2. ed. [s.l.] MIT
Press; McGraw-Hill, 2001.
CORNU, G. Linguistique juridique. [s.l: s.n.].
CORRÊA, N. K. et al. Worldwide AI ethics:
A review of 200 guidelines and recommendations for AI governance.
Patterns, v. 4, n. 10, p. 100857, 2023.
CORRÊA, U. B. Análise de sentimento baseada em aspectos usando
aprendizado profundo: uma proposta aplicada à língua
portuguesa. tese de doutorado—[s.l.] Universidade Federal de
Pelotas, 2021.
CORRÊA, U. B. et al. Overview
of the IDPT Task on Irony Detection in Portuguese at IberLEF 2021.
Procesamiento del Lenguaje Natural, v. 67, p. 269–276,
2021.
CORREIA, F. A. et al. Fine-grained legal
entity annotation: A case study on the Brazilian Supreme Court.
Information Processing & Management, v. 59, n. 1,
p. 102794, 2022.
CORTES, C.; VAPNIK, V. Support-Vector
Networks. Machine Learning, v. 20, n. 3, p.
273–297, set. 1995.
CORTES, E. et al. An Empirical Comparison of Question
Classification Methods for Question Answering Systems. (N.
Calzolari et al., Eds.)Proceedings of the Twelfth Language Resources and
Evaluation Conference. Anais...Marseille, France:
European Language Resources Association, 2020. Disponível em: <https://aclanthology.org/2020.lrec-1.665>
CORTES, E. G.; WOLOSZYN, V.; BARONE, D. A. C. When, Where, Who,
What or Why? A Hybrid Model to Question Answering Systems. (A.
Villavicencio et al., Eds.)Computational Processing of the Portuguese
Language. Anais...Cham: Springer International
Publishing, 2018.
CORTIZ, D. et al. A Weakly Supervised Dataset of Fine-Grained
Emotions in Portuguese. Anais do XIII Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível
em: <https://sol.sbc.org.br/index.php/stil/article/view/17786>
COSTA, A. et al. A
linguistically motivated taxonomy for Machine Translation error
analysis. Machine Translation, v. 29, n. 2, p.
127–161, 2015.
COSTA, L. F. Using Answer Retrieval Patterns to Answer
Portuguese Questions. (C. Peters et al., Eds.)Evaluating
Systems for Multilingual and Multimodal Information Access.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2009.
COSTA, L. F.; CABRAL, L. M. Answering Portuguese
Questions. (A. Teixeira et al., Eds.)Computational Processing
of the Portuguese Language. Anais...Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.
COSTA, P. B. DA et al. BERTabaporu:
assessing a genre-specific language model for Portuguese
NLP. Recents Advances in Natural Language Processing
(RANLP-2023). Anais...Varna, Bulgaria:
2023.
COSTA, P. B. DA; PARABONI, I. Transferência de
estilo textual arbitrário em português.
Linguamática, v. 15, n. 2, p. 19–36, 2023.
COSTA, P. B. DA; PARABONI, I. Sequence-to-sequence and
transformer approaches to Portuguese text style
transfer. Proceedings of the 16th International Conference on
Computational Processing of Portuguese.
Anais...Santiago de Compostela, Galicia/Spain:
Association for Computational Lingustics, mar. 2024. Disponível em:
<https://aclanthology.org/2024.propor-1.54>
COSTA, P.; PARABONI, I. Personality-dependent Neural Text
Summarization. Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2019).
Anais...2019.
COSTA, R. et al. Expanding UlyssesNER-Br Named
Entity Recognition Corpus with Informal User-Generated Text.
(G. Marreiros et al., Eds.)Progress in Artificial Intelligence.
Anais...Cham: Springer International Publishing, 2022.
Disponível em: <https://github.com/ulysses-camara/>
COUCKE, A. et al. Snips voice platform:
an embedded spoken language understanding system for private-by-design
voice interfaces. arXiv preprint arXiv:1805.10190,
2018.
COUILLAULT, A. et al. Evaluating corpora documentation with
regards to the Ethics and Big Data Charter. Proceedings of the
Ninth International Conference on Language Resources and Evaluation
(LREC’14). Anais...Reykjavik, Iceland:
European Language Resources Association (ELRA), 2014. Disponível em:
<http://www.lrec-conf.org/proceedings/lrec2014/pdf/424_Paper.pdf>
COUTINHO, I.; MARTINS, B. Transformer-based
models for ICD-10 coding of death certificates with Portuguese text.
Journal of Biomedical Informatics, v. 136, p. 104232,
2022.
COUTO, J. M. M.; REIS, J. C. S.; BENEVENUTO, F. Can computer network
attributes be useful for identifying low-credibility websites? A case
study in Brazil. Social Network Analysis and
Mining, v. 14, n. 1, p. 153, 2024.
COWIE, J. R. Automatic analysis of descriptive texts.
First Conference on Applied Natural Language Processing.
Anais...1983.
COWIE, J.; LEHNERT, W. Information extraction. Communications of
the ACM, v. 39, n. 1, p. 80–91, 1996.
COX, A. N. A. M., Simon J. D. AND Gonzalez-Beltran. Ten simple rules for
making a vocabulary FAIR. PLOS Computational
Biology, v. 17, n. 6, p. 1–15, jun. 2021.
CRESTANI, F. et al. “Is this document
relevant?… probably” a survey of probabilistic models in
information retrieval. ACM Computing Surveys
(CSUR), v. 30, n. 4, p. 528–552, 1998.
CRESTI, E. et al. The
C-ORAL-ROM CORPUS. A
Multilingual Resource of Spontaneous Speech for Romance
Languages. Proceedings of the Fourth International Conference
on Language Resources and Evaluation
(LREC’04). Anais...Lisbon,
Portugal: European Language Resources Association (ELRA), 2004.
Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/357.pdf>
CRISTEA, D.; IDE, N.; ROMARY, L. Veins theory: A model of global
discourse cohesion and coherence. Coling-ACL Conference.
Anais...1998.
CROCKER, M. W. Computational
psycholinguistics. The handbook of computational linguistics
and natural language processing, p. 482–513, 2010.
CROFT, W. B.; METZLER, D.; STROHMAN, T. Search engines:
Information retrieval in practice. [s.l.] Addison-Wesley, 2010.
v. 520
CRUSE, D. A. Lexical Semantics. Cambridge, UK:
campress, 1986.
CRUZ, B. S. Concessionária do Metrô de SP é processada por ter
câmeras que leem nossas emoções. Disponível em: <
https://www.uol.com.br/tilt/noticias/redacao/2018/08/31/concessionaria-do-metro-de-sp-e-processada-por-ter-cameras-que-leem-emocoes.htm
>. Acesso em: 29 ago. 2023.
CRUZ, B. S. Racismo Calculado. Disponível em: <
https://www.uol.com.br/tilt/reportagens-especiais/como-os-algoritmos-espalham-racismo/#cover
>. Acesso em: 29 ago. 2023.
CRUZ, J. A. DA et al. Creating an Academic Conversational Agent
for Dynamic Information Retrieval. Proceedings of the XVI
Brazilian Symposium on Information Systems. Anais...:
SBSI ’20.New York, NY, USA: Association for Computing Machinery, 2020.
Disponível em: <https://doi.org/10.1145/3411564.3411647>
CSIKSZENTMIHALYI, M. Flow: The Psychology of Optimal
Experience. [s.l.] Harper Perennial, 2008.
CUCCHIARELLI, A.; VELARDI, P. Unsupervised named entity recognition
using syntactic and semantic contextual evidence. Computational
Linguistics, v. 27, n. 1, p. 123–131, 2001.
CUI, H. et al. Probabilistic query expansion using query
logs. Proceedings of the 11th international conference on World
Wide Web. Anais...2002.
CUI, L.; WEI, F.; ZHOU, M. Neural Open Information
Extraction. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers).
Anais...2018.
CULOTTA, A.; MCCALLUM, A.; BETZ, J. Integrating probabilistic
extraction models and data mining to discover relations and patterns in
text. Proceedings of the Human Language Technology Conference
of the NAACL, Main Conference. Anais...2006.
CUNHA, A. L. V. DA. Coh-Metrix-Dementia: análise automática de
distúrbios de linguagem nas demências utilizando Processamento de
Línguas Naturais. ICMC - USP São Carlos: Biblioteca Digital
USP, 2015.
CUNHA, L. C. C. DA. Um Corpus anotado de mensagens do WhatsApp
em PT-BR para detecção automática de desinformação textual. https://github.com/cabrau/FakeWhatsApp.Br, 2021.
CUNHA RECUERO, R. DA. Elementos
para a análise da conversação na
comunicação mediada pelo computador.
Verso e Reverso, v. 22, 2008.
DA SILVA JR., J. A. Um avaliador automático de
redações. mathesis—[s.l.]
Universidade Federal do Espírito Santo, 2021.
DADICO, C. M. O Ódio Ancestral Como Elemento Constitutivo Do
Estado Moderno e Seus Reflexos Na Compreensão dos Crimes De Ódio: Um
Diálogo Entre o Direito Internacional e o Direito Brasileiro.
tese de doutorado—Porto Alegre, RS, Brazil: Programa de Pós-Grduação em
Ciências Criminais da Escola de Direito da Pontifícia Universidade
Católica do Rio Grande do Sul, 2020.
DAHL, V. Natural
language processing and logic programming. Journal of Logic
Programming, v. 19-20, n. 1, p. 681–714, 1994.
DAI, E.; SUN, Y.; WANG, S. Ginger cannot cure cancer: Battling
fake health news with a comprehensive data repository.
Proceedings of the International AAAI Conference on Web and Social
Media. Anais...Atlanta, USA: 2020.
DAI, Z. et al. Transformer-XL: Attentive Language Models beyond
a Fixed-Length Context. (A. Korhonen, D. R. Traum, L. Màrquez,
Eds.)Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers.
Anais...Association for Computational Linguistics,
2019. Disponível em: <https://doi.org/10.18653/v1/p19-1285>
DALE, R.; HADDOCK, N. Generating referring
expressions involving relations. Proceedings of the fifth
conference on European chapter of the Association for Computational
Linguistics. Anais...: EACL’91.Berlin, Germany:
Association for Computational Linguistics, 1991.
DALE, R.; MAZUR, P. Handling
Conjunctions in Named Entities. (A. Gelbukh,
Ed.)Computational Linguistics and Intelligent Text Processing.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.
DALIANIS, H. Characteristics of
Patient Records and Clinical Corpora. Em: Clinical Text
Mining: Secondary Use of Electronic Patient Records. Cham:
Springer International Publishing, 2018. p. 21–34.
DANESCU-NICULESCU-MIZIL, C. et al. Echoes of power: Language
effects and power differences in social interaction.
Proceedings of the 21st international conference on World Wide Web.
Anais...2012. Disponível em: <https://doi.org/10.1145/2187836.2187931>
DANTAS, A. C. et al. AstroBot: Um chatbot com
inteligência artificial para auxiliar no processo de ensino
e aprendizagem de fı́sica. Anais dos Workshops do
Congresso Brasileiro de Informática na
Educação. Anais...2019.
Disponível em: <https://doi.org/10.5753/cbie.wcbie.2019.1196>
DARJI, H.; MITROVIĆ, J.; GRANITZER, M. German BERT
Model for Legal Named Entity Recognition. Proceedings of
the 15th International Conference on Agents and Artificial Intelligence.
Anais...SCITEPRESS - Science; Technology Publications,
2023.
DARPA (ED.). Proceedings of the 3rd Message Understanding
Conference (MUC-3). San Diego, EUA: Morgan Kaufmann, 1991.
DE OLIVEIRA, J. M.; ANTUNES, R. S.; DA COSTA, C. A. SOAP classifier for
free-text clinical notes with domain-specific pre-trained language
models. Expert Systems with Applications, v. 245,
p. 123046, 2024.
DE PAIVA, V. et al. An overview of Portuguese
wordnets. Proceedings of the 8th Global WordNet Conference
(GWC). Anais...2016.
DE PAIVA, V.; RADEMAKER, A.; MELO, G. DE. OpenWordNet-PT: An
Open Brazilian Wordnet for Reasoning.
Proceedings of COLING 2012: Demonstration Papers.
Anais...2012.
DE SOUSA, S. C.; AZIZ, W.; SPECIA, L. Assessing the post-editing
effort for automatic and semi-automatic translations of DVD
subtitles. Proceedings of the International Conference Recent
Advances in Natural Language Processing 2011.
Anais...2011.
DE SOUZA, M. C. et al. Keywords attention for
fake news detection using few positive labels. Information
Sciences, v. 663, p. 120300, 2024.
DEEMTER, K. VAN. Designing Algorithms for Referring with Proper
Names. Proceedings of the 9th International Natural Language
Generation conference. Anais...: INLG’16.Edinburgh, UK:
Association for Computational Linguistics, a2016. Disponível em: <http://www.aclweb.org/anthology/W16-6605>
DEEMTER, K. VAN. Computational Models of Referring. A Study in
Cognitive Science. Cambridge, Massachusetts, USA:
MIT Press, 2016b.
DEERWESTER, S. et al. Indexing by latent semantic analysis.
Journal of the American society for information
science, v. 41, n. 6, p. 391–407, 1990.
DEJONG, G. Prediction and substantiation: A new approach to natural
language processing. Cognitive Science, v. 3, n. 3, p.
251–273, 1979.
DEL CORRO, L.; GEMULLA, R. Clausie: clause-based open
information extraction. Proceedings of the 22nd international
conference on World Wide Web. Anais...: WWW ’13.New
York, NY, USA: ACM; ACM, 2013. Disponível em: <http://doi.acm.org/10.1145/2488388.2488420>
DELL’ORLETTA, F.; MONTEMAGNI, S.; VENTURI, G. Read-it: Assessing
readability of italian texts with a view to text simplification.
Proceedings of the 2nd Workshop on Speech and Language
Processing for Assistive Technologies, p. 73–83, 2011.
DEMNER-FUSHMAN, D.; CHAPMAN, W. W.; MCDONALD, C. J. What can natural
language processing do for clinical decision support? J Biomed
Inform, v. 42, n. 5, p. 760–772, ago. 2009.
DEMPSEY, P. The teardown: Google Home personal assistant.
Engineering & Technology, v. 12, n. 3, p. 80–81,
2017.
DERIU, J. et al. Survey on evaluation
methods for dialogue systems. Artificial Intelligence
Review, v. 54, p. 755–810, 2021.
DETTMERS, T. et al. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv preprint arXiv:2305.14314, 2023.
DEVARAJU, A. et al. FAIRsFAIR Data Object Assessment
Metrics 0.5. [s.l.] Research Data Alliance (RDA), out.
2020. Disponível em: <https://zenodo.org/record/6461229>.
DEVLIN, J. et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. (J.
Burstein, C. Doran, T. Solorio, Eds.)Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019.
Anais...Minneapolis, MN, USA: Association for
Computational Linguistics, 2019. Disponível em: <https://doi.org/10.18653/v1/n19-1423>
DHUMAL DESHMUKH, R.; KIWELEKAR, A. Deep Learning
Techniques for Part of Speech Tagging by Natural Language
Processing. 2020 2nd International Conference on Innovative
Mechanisms for Industry Applications (ICIMIA).
Anais...mar. 2020.
DI GANGI, M. A. et al.
MuST-C: a
Multilingual Speech Translation
Corpus. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Anais...Minneapolis, Minnesota: Association
for Computational Linguistics, jun. 2019. Disponível em: <https://aclanthology.org/N19-1202>
DIAS, M. S. et al. A qualitative analysis of a corpus of opinion
summaries based on aspects. Proceedings of the 1st Workshop on
Tools and Resources for Automatically Processing Portuguese and Spanish.
Anais...2014.
DIAS-DA-SILVA, B. C. A face tecnológica dos estudos
da linguagem: o processamento automático das
lı́nguas naturais. 1996. 272f. tese de
doutorado—[s.l.] Tese (Doutorado em
Lingüı́stica e Lı́ngua
Portuguesa)–Faculdade de Ciências e …, 1996.
DIAS-DA-SILVA, B. C. Wordnet.Br: An Exercise of Human Language
Technology Research. Proceedings of the Third International
WordNet Conference. Anais...2005. Disponível em: <http://semanticweb.kaist.ac.kr/conference/gwc/pdf2006/6.pdf>
DIAS-DA-SILVA, B. C.; MORALES, H. R. DE. A Construção de um Thesaurus
Eletrônico para o Português. Alfa, 2003.
DIAZ, F.; MITRA, B.; CRASWELL, N. Query Expansion with
Locally-Trained Word Embeddings. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics.
Anais...2016.
DODDINGTON, G. Automatic Evaluation of Machine Translation
Quality Using N-Gram Co-Occurrence Statistics. Proceedings of
the Second International Conference on Human Language Technology
Research. Anais...: HLT ’02.San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.
DODDINGTON, G. et al. The Automatic Content Extraction
(ACE) Program: Tasks, Data, and Evaluation. (M. T. Lino
et al., Eds.)Proceedings of LREC’2004, Fourth International
Conference on Language resources and Evaluation (Lisboa, 26-28 May
2004). Anais...2004. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf>
DODGE, J. et al. Show Your Work: Improved Reporting of
Experimental Results. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...Hong Kong, China: Association
for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1224>
DOHERTY, S. et al. Mapping the industry I:
Findings on translation technologies and quality
assessment. QTLaunchPad – Mapping the Industry I: Findings on
Translation Technologies and Quality Assessment.
Anais...GALA, 2013. Disponível em: <http://doras.dcu.ie/19474/1/Version_Participants_Final.pdf>.
Acesso em: 11 nov. 2015
DOHERTY, S. et al. On Education and
Training in Translation Quality Assessment. Em: MOORKENS, J. et al.
(Eds.). Translation Quality Assessment: From Principles to
Practice. Cham: Springer International Publishing, 2018. p.
95–106.
DONG, L. et al. Learning to Generate Product Reviews from
Attributes. Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers. Anais...: EACL’17.Valencia, Spain: Association
for Computational Linguistics, 2017. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1059.pdf>
DONG, Q. et al. A
Survey for In-context Learning. CoRR, v.
abs/2301.00234, 2023.
DORR, B. et al. Machine translation evaluation and optimization. Em:
Handbook of Natural Language Processing and Machine Translation:
DARPA Global Autonomous Language Exploitation. [s.l.] Springer,
2011. p. 745–843.
DOZIER, C. et al. Named Entity
Recognition and Resolution in Legal Text. Em: FRANCESCONI, E. et al.
(Eds.). Semantic Processing of Legal Texts: Where the Language
of Law Meets the Law of Language. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. p. 27–43.
DROR, R. et al. The Hitchhiker’s Guide to Testing Statistical
Significance in Natural Language Processing. Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Anais...Melbourne, Australia:
Association for Computational Linguistics, jul. 2018. Disponível em:
<https://aclanthology.org/P18-1128>
DROR, R. et al. Statistical
significance testing for natural language processing.
[s.l.] Springer, 2020.
DU BOIS, J. W. et al. Santa Barbara
corpus of spoken American English.
Parts 1–4. Philadelphia: Linguistic Data
Consortium, 2000--2005.
DU BOIS, J. W. et al. Discourse transcription. Santa
Barbara: Department of Linguistics, University of California, 1992. v. 4
DUBAY, W. Robert
Gunning’s Fog Readability Formula. Plain Language At Work
Newsletter, v. 8, 2014.
DUBAY, W. H. Smart Language: Readers, Readability, and the
Grading of Text. Costa Mesa, CA: Impact Information, 2007.
DUMA, D.; KLEIN, E. Generating Natural Language from Linked
Data: Unsupervised template extraction. Proceedings of the 10th
International Conference on Computational Semantics (IWCS 2013) – Long
Papers. Anais...Potsdam, Germany: Association for
Computational Linguistics, 2013. Disponível em: <http://www.aclweb.org/anthology/W13-0108>
DUNCAN, S. Some signals and
rules for taking speaking turns in conversations. Journal of
personality and social psychology, v. 23, n. 2, p. 283, 1972.
DUNIETZ, J. The
field of natural language processing is chasing the wrong goal.
MIT Technology Review, 2020.
DURAN, M. S. et al. The Dawn of the Porttinari Multigenre
Treebank: Introducing its Journalistic Portion. Anais do XIV
Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2023. Disponível
em: <https://sol.sbc.org.br/index.php/stil/article/view/25443>
DURAN, M. S.; ALUÍSIO, S. M. Propbank-Br: a
Brazilian Treebank Annotated with Semantic Role Labels.
Proceedings of the 8th International Conference on Language Resources
and Evaluation - LREC. Anais...2012.
DUŠEK, O.; NOVIKOVA, J.; RIESER, V. Findings of the E2E NLG challenge.
arXiv preprint arXiv:1810.01170, 2018.
EARL, L. L. Experiments in automatic extracting and indexing.
Information Storage and Retrieval, v. 6, n. 4, p.
313–330, 1970.
EBDEN, P.; SPROAT, R. The Kestrel TTS text
normalization system. Natural Language Engineering,
v. 21, p. 333–353, maio 2014.
EDMONDS, P.; KILGARRIFF, A. Introduction to the special issue on
evaluating word sense disambiguation systems. Natural Language
Engineering, v. 8, n. 4, p. 279–291, 2002.
EDMUNDSON, H. P. New methods in automatic extracting. Journal of
the ACM (JACM), v. 16, n. 2, p. 264–285, 1969.
EIJCK, J. VAN; UNGER, C. Computational Semantics with Functional
Programming. [s.l.] Cambridge University Press, 2010.
EISENSTEIN, J. Introduction to Natural Language
Processing. [s.l.] The MIT Press, 2019.
EKMAN, P. An
argument for basic emotions. Cognition and Emotion,
v. 6, n. 3-4, p. 169–200, 1992.
EL AYADI, M.; KAMEL, M. S.; KARRAY, F. Survey on speech emotion
recognition: Features, classification schemes, and databases.
Pattern recognition, v. 44, n. 3, p. 572–587, 2011.
ELLIOT, N.; KLOBUCAR, A. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 16–35.
EMPOLI, G. DA. Os engenheiros do caos: Como as fake news, as
teorias da conspiração e os algoritmos estão sendo utilizados para
disseminar ódio, medo e influenciar eleições. [s.l.] Vestígio
Editora, 2019.
ENGELMANN, D. C. et al. A conversational agent to support
hospital bed allocation. Brazilian Conference on Intelligent
Systems. Anais...Springer, 2021. Disponível em: <https://doi.org/10.1007/978-3-030-91702-9_1>
ERMAKOVA, L.; COSSU, J. V.; MOTHE, J. A survey on evaluation of
summarization methods. Information processing &
management, v. 56, n. 5, p. 1794–1814, 2019.
ERYIǦIT, G. et al. Annotation and Extraction of Multiword
Expressions in Turkish Treebanks. Proceedings of
the 11th Workshop on Multiword Expressions.
Anais...Denver, Colorado: Association for Computational
Linguistics, jun. 2015. Disponível em: <https://aclanthology.org/W15-0912>
ESSENFELDER, R.; RODRIGUES, V. P. Seqüências
inseridas: fluência e disfluência em uma
conversação espontânea.
Revista Virtual de Estudos da Linguagem–ReVEL, v. 3, n.
4, 2005.
ESTRELLA, P.; POPESCU-BELIS, A.; KING, M. The
FEMTI guidelines for contextual MT evaluation:
principles and resources. Em: WALTER DAELEMANS; VÉRONIQUE HOSTE
(Eds.). Evaluation of translation
Technology. Linguistica Antverpiensia
new Series- themes em Translation
Studies. [s.l: s.n.].
ETHAYARAJH, K.; JURAFSKY, D. Utility is in the Eye of the User:
A Critique of NLP Leaderboards. Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.393>
ETZIONI, O. et al. Unsupervised named-entity extraction from the web: An
experimental study. Artificial intelligence, v. 165, n.
1, p. 91–134, 2005.
EVERT, S. Corpora and
collocations. Em: LÜDELING, A.; KYTÖ, M. (Eds.). Corpus
Linguistics: An International Handbook. [s.l.] De Gruyter
Mouton, 2009. v. 2p. 1212–1248.
EVERT, S.; KRENN, B. Methods for the Qualitative Evaluation of
Lexical Association Measures. Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics.
Anais...Toulouse, France: Association for Computational
Linguistics, jul. 2001. Disponível em: <https://aclanthology.org/P01-1025>
FABBRI, A. R. et al. SummEval: Re-evaluating Summarization Evaluation.
Transactions of the Association for Computational
Linguistics, v. 9, p. 391–409, 2021.
FADER, A.; SODERLAND, S.; ETZIONI, O. Identifying Relations for
Open Information Extraction. Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing.
Anais...Edinburgh, Scotland, UK.: Association for
Computational Linguistics, jul. 2011. Disponível em: <https://www.aclweb.org/anthology/D11-1142>
FAIR DATA MATURITY MODEL WORKING GROUP RDA. FAIR Data
Maturity Model. Specification and Guidelines. Research
Data Alliance; Zenodo, 2020. Disponível em: <https://doi.org/10.15497/rda00050>
FAN, A.; LEWIS, M.; DAUPHIN, Y. Hierarchical Neural Story
Generation. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1082>
FARAHMAND, M.; SMITH, A.; NIVRE, J. A Multiword Expression Data
Set: Annotating Non-Compositionality and Conventionalization for
English Noun Compounds. proc of the 11th Workshop
on mwes (MWE 2015). Anais...Denver, Colorado, USA: acl,
2015. Disponível em: <http://aclweb.org/anthology/W15-0904>
FARHANGIAN, F.; CRUZ, R. M. O.; CAVALCANTI, G. D. C. Fake news detection:
Taxonomy and comparative study. Information Fusion,
v. 103, p. 102140, 2024.
FARIAS, D. S. et al. Opinion-Meter: A Framework for Aspect-Based
Sentiment Analysis. Proceedings of the 22nd Brazilian Symposium
on Multimedia and the Web. Anais...2016.
FARZINDAR, A.; INKPEN, D. Natural Language Processing for Social
Media. Second edition ed. [s.l.] Morgan; Claypool, 2018.
FAUSTINI, P. H. A.; COVÕES, T. F. Fake news detection in
multiple platforms and languages. Expert Systems with
Applications, v. 158, p. 113503, 2020.
FAUSTINI, P.; COVÕES, T. F. Fake News Detection
Using One-Class Classification. Proceedings of the 8th
Brazilian Conference on Intelligent Systems (BRACIS’19).
Anais...Salvador, BA, Brazil: IEEE, out. 2019.
FÁVERO, L. L.; ANDRADE, M. L. DA C. V. DE O.; AQUINO, Z. G. O. DE.
Perguntas e respostas como mecanismos de coesão e
coerência no texto falado. Gramática
do português falado, v. 4, p. 473–508, 1996.
FÁVERO, L. L.; ANDRADE, M. L. DA C. V. DE O.; AQUINO, Z. G. O. DE. Discurso e
interação: a
reformulação nas entrevistas.
DELTA: Documentação de Estudos em
Lingüı́stica Teórica e
Aplicada, v. 14, p. 91–103, 1998.
FAYEK, H. M. Speech Processing for Machine Learning: Filter
banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s
In-Between., 2016. Disponível em: <https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html>
FEDERICO, M. et al. Assessing the Impact of Translation Errors
on Machine Translation Quality with Mixed-effects Models.
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Anais...Doha,
Qatar: Association for Computational Linguistics, out. 2014. Disponível
em: <https://aclanthology.org/D14-1172>
FEIJÓ, D. DE V.; MOREIRA, V. P. Mono vs Multilingual
Transformer-based Models: a Comparison across Several Language
Tasks. CoRR, v. abs/2007.09757, 2020.
FELLBAUM, C. WordNet: An
Electronic Lexical Database. [s.l.] The MIT Press,
1998.
FELTRIM, V. D. et al. A Construção de uma Ferramenta de Auxílio
à Escrita de Resumos Acadêmicos em Português. Anais do Encontro
Nacional de Inteligência Artificial (ENIA’2003).
Anais...SBC, 2003.
FELTRIN, G. R.; VIANNA, D.; SILVA, A. DA. Um Estudo Sobre
Métricas de Avaliação para Sumarização de Acórdãos. Anais do
XXXVIII Simpósio Brasileiro de Bancos de Dados.
Anais...SBC, 2023.
FENNELLY, O. et al. Use of standardized terminologies in clinical
practice: A scoping review. Int J Med Inform, v. 149,
p. 104431, fev. 2021.
FERLA, J. R. Discurso
reportado em narrativas: a construção
colaborativa de histórias na
fala-em-interação. Trabalho de
conclusão de curso. Universidade do Vale do Rio dos
Sinos, 2020.
FERNANDES, E. R.; SANTOS, C. N. DOS; MILIDIÚ, R. L. Latent trees for
coreference resolution. Computational Linguistics,
2014.
FERNANDES, J. M.; WON, M.; MARTINS, B. Speechmaking and the
Selectorate: Persuasion in Nonpreferential Electoral Systems.
Comparative Political Studies, v. 53, n. 5, p. 667–699,
a2020.
FERNANDES, U. DA S. et al. Analyzing MoLIC’s Applicability to
Model the Interaction of Conversational Agents: A Case Study on
ANA Chatbot. Proceedings of the XX Brazilian
Symposium on Human Factors in Computing Systems.
Anais...: IHC ’21.New York, NY, USA: Association for
Computing Machinery, 2021. Disponível em: <https://doi.org/10.1145/3472301.3484367>
FERNANDES, W. P. D. et al. Appellate court
modifications extraction for Portuguese. Artificial
Intelligence and Law, v. 28, n. 3, p. 327–360, b2020.
FERRADEIRA, J. E. DE S. Resolução de anáfora
pronominal. mathesis—[s.l.] Universidade Nova de Lisboa;
Dissertação de Mestrado, Universidade Nova de Lisboa, 1993.
FERRÁNDEZ, Ó. et al. Tackling HAREM’s portuguese named entity
recognition task with spanish resources. Reconhecimento de
entidades mencionadas em português:
Documentação e actas do HAREM, a primeira
avaliação conjunta na área.
Linguateca (http://www. linguateca.
pt/aval_conjunta/LivroHAREM/Cap11-SantosCardoso2007-Ferrandezetal.
pdf), 2007.
FERREIRA, A. et al. Agentes de conversação para idosos,
plataforma Guardião. Anais Estendidos do XVIII
Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais.
Anais...Porto Alegre, RS, Brasil: SBC, 2019. Disponível
em: <https://sol.sbc.org.br/index.php/ihc_estendido/article/view/8386>
FERREIRA, A. C. et al. Padrões linguísticos para detecção de ironia em
múltiplos idiomas. Revista Gestão & Tecnologia,
2017.
FERREIRA, F.; SWETS, B. How incremental is
language production? Evidence from the production of utterances
requiring the computation of arithmetic sums. Journal of
Memory and Language, v. 46, n. 1, p. 57–84, 2002.
FERREIRA MELLO, R. et al. Towards automated content analysis of
rhetorical structure of written essays using sequential
content-independent features in Portuguese. (A. F. Wise, R.
Martinez-Maldonado, I. Hilliger, Eds.)LAK22 Conference
Proceedings. Anais...United States of America:
Association for Computing Machinery (ACM), 2022.
FERREIRA, R. et al. Towards Automatic Content Analysis of Rhetorical
Structure in Brazilian College Entrance Essays. Em: [s.l:
s.n.]. p. 162–167.
FERREIRA, T. C. Advances in Natural Language Generation:
Generating varied outputs from semantic inputs. tese de
doutorado—[s.l.] Tilburg University, 2018.
FERREIRA, T. C. et al. The 2020 bilingual, bi-directional
webnlg+ shared task overview and evaluation results (webnlg+
2020). Proceedings of the 3rd International Workshop on Natural
Language Generation from the Semantic Web (WebNLG+).
Anais...2020.
FIAD, R. S. Reescrita, dialogismo e etnografia. Linguagem em
(Dis) curso, v. 13, p. 463–480, 2013.
FILLMORE, C. J. et al. Frame semantics and the nature of
language. Annals of the New York Academy of Sciences:
Conference on the origin and development of language and speech.
Anais...New York, 1976.
FILLMORE, C. J.; KAY, P.; O’CONNOR, M. C. Regularity and Idiomaticity in
Grammatical Constructions: The Case of Let Alone.
Language, v. 64, p. 501–538, 1988.
FINATTO, M. J. B. Projeto PorPopular, frequência de verbos em português
e no jornal popular popular brasileiro. Em: UFMS/LABORATÓRIO DE EDIÇÃO
DA FALE-UFMG, E. DA (Ed.). As Ciências do Léxico: lexicologia,
lexicografia, terminologia. 1. ed. [s.l.] Aparecida Negri
Isquerdo; Maria Cândida Trindade da Costa de Seabra, 2012. v. VIp.
227–244.
FINATTO, M. J. B. Humanidades digitais e
estudos históricos do léxico. Domínios de
Lingu@gem, v. 17, p. e1769, 2023.
FINATTO, M. J. B.; ESTEVES, F. F.; VILLAR, G. S. Construindo
uma terminologia de raiz: textos legislativos sob exploração
terminológica. Revista Platô, v. 5, n. 9, 2022.
FINATTO, M. J. B.; PARAGUASSU, L. B. Acessibilidade textual e
terminológica. 2022.
FINATTO, M. J.; GONÇALVES, M. F.; LAZZARI, R. Léxico e
terminologia em um novo gênero textual do
século XVIII: o manual para enfermeiros. In:
Natalia Terrón Vinagre & Jenny Brumme (orgs.) Emergencia de nuevos
géneros textuales y terminología en la historia de los lenguajes de
especialidad., 2023.
FINCH, S. E.; CHOI, J. D. Towards Unified Dialogue System
Evaluation: A Comprehensive Analysis of Current Evaluation
Protocols. Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue.
Anais...1st virtual meeting: Association for
Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.sigdial-1.29>
FINE, K. Truthmaker semantics. A Companion to the Philosophy of
Language, p. 556–577, 2017.
FINGER, M. Técnicas de otimização
da precisão empregadas no etiquetador Tycho Brahe.
Proceedings of the International Conference on the Computational
treatment of Portuguese, PROPOR, 2000.
FINLAYSON, M.; KULKARNI, N. Detecting Multi-Word Expressions
Improves Word Sense Disambiguation. Proc. of the
ACL 2011 Workshop on MWEs.
Anais...Portland, OR: 2011.
FIRDAUS SOLIHIN, R. F. A., Indra Budi; MAKARIM, E. Advancement of
information extraction use in legal documents. International
Review of Law, Computers & Technology, v. 35, n. 3, p.
322–351, 2021.
FIRTH, J. R. The technique of semantics. Transactions of the
philological society, v. 34, n. 1, p. 36–73, a1957.
FIRTH, J. R. A synopsis of linguistic theory 1930–1955.
[s.l.] Blackwell, 1957b. p. 1–32
FLAKE, J. K.; FRIED, E. I. Measurement
Schmeasurement: Questionable Measurement Practices and How to Avoid
Them. Advances in Methods and Practices in Psychological
Science, v. 3, n. 4, p. 456–465, 2020.
FLEISS, J. L. Measuring
nominal scale agreement among many raters. Psychological
Bulletin, v. 76, n. 5, p. 378–382, 1971.
FLORES, F. N.; MOREIRA, V. P.; HEUSER, C. A. Assessing the
impact of stemming accuracy on information retrieval.
International Conference on Computational Processing of the Portuguese
Language. Anais...Springer, 2010.
FLORIAN, R. et al. Named entity recognition through classifier
combination. Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003. Anais...2003.
FOKKENS, A. et al. Offspring from Reproduction Problems: What
Replication Failure Teaches Us. Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Anais...Sofia, Bulgaria: Association for
Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-1166>
FONSECA, E. B. Resolução de
correferências em língua portuguesa: pessoa,
local e organização. Dissertação de
Mestrado, Pontifı́cia Universidade Católica do
Rio Grande do Sul, 2014.
FONSECA, E. B. et al. Summ-it++: an enriched version of the
summ-it corpus. Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16).
Anais...a2016.
FONSECA, E. B. Resolução
de correferência nominal usando semântica em
língua portuguesa. tese de doutorado—[s.l.] Pontifícia
Universidade Católica do Rio Grande do Sul; Pontifı́cia
Universidade Católica do Rio Grande do Sul, 2018.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Dealing With Imbalanced
Datasets For Coreference Resolution. Proceedings of The
Twenty-Eighth International Flairs Conference.
Anais...a2015.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Adapting an Entity Centric
Model for Portuguese Coreference Resolution. Portorož,
Slovenia, c2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. CORP: Coreference
Resolution for Portuguese., b2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. A. Coreference Resolution In
Portuguese: Detecting Person, Location And Organization. Journal
of the Brazilian Computational Intelligence Society, v. 12, n.
2, p. 86–97, 2014.
FONSECA, E. R. et al. Visão
geral da avaliação de similaridade semântica e inferência textual.
Linguamática, v. 8, n. 2, p. 3–13, d2016.
FONSECA, E. R. et al. Automatically Grading Brazilian Student
Essays. (A. Villavicencio et al., Eds.)Computational Processing
of the Portuguese Language. Anais...Springer
International Publishing, a2018.
FONSECA, E. R.; ROSA, J. L. G. Mac-Morpho Revisited: Towards
Robust Part-of-Speech Tagging. Proceedings of the 9th
Brazilian Symposium in Information and Human Language
Technology. Anais...2013. Disponível em: <https://aclanthology.org/W13-4811>
FONSECA, E. R.; ROSA, J. L.; ALUÍSIO, S. M. Evaluating word
embeddings and a revised corpus for part-of-speech tagging in
Portuguese. Journal of the Brazilian Computer
Society, v. 21, n. 1, p. 32–38, fev. b2015.
FONSECA, E.; VANIN, A.; VIEIRA, R. Mention clustering to improve
portuguese semantic coreference resolution. International
Conference on Applications of Natural Language to Information Systems.
Anais...Springer, b2018.
FONT LLITJÓS, A.; CARBONELL, J. G.; LAVIE, A. A framework for
interactive and automatic refinement of transfer-based machine
translation. Proceedings of the 10th EAMT Conference: Practical
applications of machine translation. Anais...Budapest,
Hungary: European Association for Machine Translation, 2005. Disponível
em: <https://aclanthology.org/2005.eamt-1.13>
FORCADA, M. L.; ÑECO, R. P. Recursive hetero-associative
memories for translation. International Work-Conference on
Artificial Neural Networks. Anais...Springer, 1997.
FORNACIARI, T.; POESIO, M. Automatic deception
detection in Italian court cases. Artif. Intell.
Law, v. 21, n. 3, p. 303–340, set. 2013.
FORT, K.; ADDA, G.; COHEN, K. B. Last Words:
Amazon Mechanical Turk: Gold Mine
or Coal Mine? Computational Linguistics, v. 37, n.
2, p. 413–420, jun. 2011.
FORTE MARTINS, A. D. et al. Detection of misinformation about
covid-19 in Brazilian Portuguese
WhatsApp messages. International
Conference on Applications of Natural Language to Information Systems.
Anais...Springer, 2021.
FORTUNA, P. et al. A Hierarchically-Labeled
Portuguese Hate Speech Dataset. Proceedings of the
Third Workshop on Abusive Language Online.
Anais...2019.
FORTUNA, P.; NUNES, S. A survey on automatic detection of hate speech in
text. ACM Computing Surveys (CSUR), 2018.
FOVE. Fove Eye Tracker., 2018. Disponível em: <https://www.getfove.com/>
FREGE, G. Über Sinn und Bedeutung. Zeitschrift
für Philosophie und philosophische Kritik, v. 100,
p. 25–50, 1892/19601892/1960.
FREIRE, P. Pedagogia do Oprimido. Rio de Janeiro: Paz e
Terra/SA, 1989.
FREITAS, C. et al. Relações
semânticas do ReRelEM: além das
entidades no Segundo HAREM. Em: MOTA, C.;
SANTOS, D. (Eds.). Desafios na avaliação conjunta
do reconhecimento de entidades mencionadas. [s.l.] Linguateca,
2008a. p. 77–96.
FREITAS, C. et al. Relation detection between named entities:
report of a shared task. Proceedings of the Workshop on
Semantic Evaluations: Recent Achievements and Future Directions.
Anais...Boulder, Colorado: b2009.
FREITAS, C. et al. Detection of relations between
named entities: report of a shared task.
Proceedings of the NAACL HLT
Workshop on Semantic Evaluations:
Recent Achievements and Future
Directions, SEW-2009.
Anais...Boulder, Colorado, USA: a2009. Disponível em:
<https://comum.rcaap.pt/bitstream/10400.26/20504/1/FreitasetalSEW2009.pdf>
FREITAS, C. et al. Second HAREM: Advancing the
State of the Art of Named Entity Recognition in Portuguese.
Proceedings of the International Conference on Language Resources and
Evaluation. Anais...Valletta, Malta: 2010. Disponível
em: <http://www.lrec-conf.org/proceedings/lrec2010/summaries/412.html>
FREITAS, C. et al. Vampiro que brilha... rá! Desafios na
anotação de opinião em um corpus de resenhas de livros.
Proceedings of XI Encontro de Linguística de Corpus.
Anais...a2012.
FREITAS, C. et al. O que é uma resposta? Notas de uns
avaliadores estafados. Linguamática, v. 4,
n. 1, p. 67–75, b2012.
FREITAS, C. Sobre a construção de um léxico da afetividade para o
processamento computacional do português. Revista Brasileira de
Linguística Aplicada, 2013.
FREITAS, C. et al. Tagsets and Datasets: Some Experiments Based
on Portuguese Language. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2018.
FREITAS, C. Linguística
Computacional. [s.l.] Parábola Editorial, 2022.
FREITAS, C.; ROCHA, P.; BICK, E. Floresta
sintá(c)tica: bigger, thicker and easier.
International Conference on Computational Processing of the Portuguese
Language. Anais...Springer, b2008.
FREITAS, C.; SANTOS, D. Gender
Depiction in Portuguese: Distant
reading Brazilian and Portuguese
literature. 2nd Annual Conference of
Computational Literary Studies.
Anais...2023. Disponível em: <https://www.linguateca.pt/Diana/download/FreitasSantos2023-2ndCCLS.pdf>
FREITAS, C.; SOUZA, E. Sujeito oculto
às claras: uma abordagem descritivo-computacional / Omitted subjects
revealed: a quantitative-descriptive approach. REVISTA DE
ESTUDOS DA LINGUAGEM, v. 29, n. 2, p. 1033–1058, 2021.
FREITAS, L. A. DE et al. Pathways for irony detection in
tweets. Proceedings of the Symposium on Applied Computing
(SAC). Anais...2014.
FREITAS, L. A. DE. Feature-level sentiment analysis applied to
brazilian portuguese reviews. tese de doutorado—[s.l.]
Pontifícia Universidade Católica do Rio Grande do Sul, 2015.
FREITAS, L. A. DE; SANTOS, L. DOS; DEON, D. Padrões linguísticos para
detecção de ironia em múltiplos idiomas. Revista Eletrônica de
Iniciação Científica em Computação, 2020.
FRESCHI, A. C. A
avaliação por pares no teletandem
institucional integrado: um estudo de caso sobre o feedback
linguı́stico nas sessões orais em
português. mathesis—[s.l.] Universidade
Estadual Paulista (Unesp), 2017.
FRIEDMAN, B. et al. Value sensitive
design and information systems. Early engagement and new
technologies: Opening up the laboratory, p. 55–95, 2013.
FULLER, C. et al. An Analysis of Text-Based Deception Detection
Tools. Proceedings of the Twelfth Americas Conference on
Information Systems. Anais...2006.
FYFE, S. et al. Apophenia, theory of mind and schizotypy: perceiving
meaning and intentionality in randomness. Cortex, v.
44, n. 10, p. 1316–1325, 2008.
GAGO, P. C. Questões
de transcrição em análise da
conversa. Veredas-Revista de Estudos
Linguı́sticos, v. 6, n. 2, 2002.
GAIZAUSKAS, R. Evaluating Language Processing Applications and
Components., 2003. Disponível em: <https://www.linguateca.pt/Repositorio/rgaizauskasPROPOR2003.pdf>
GALHARDI, C. P. et al. Fato ou
Fake? Uma análise da
desinformação frente à pandemia
da COVID-19 no Brasil.
Ciência & Saúde Coletiva,
v. 25, p. 4201–4210, out. 2020.
GAMALLO, P.; GARCIA, M. Multilingual open information
extraction. (F. Pereira et al., Eds.)Portuguese Conference on
Artificial Intelligence. Anais...Cham: Springer;
Springer International Publishing, 2015. Disponível em: <https://doi.org/10.1007/978-3-319-23485-4_72>
GAMALLO, P.; GARCIA, M.; FERNÁNDEZ-LANZA, S. Dependency-based
open information extraction. Proceedings of the joint workshop
on unsupervised and semi-supervised learning in NLP.
Anais...: ROBUS-UNSUP ’12.Stroudsburg, PA, USA:
Association for Computational Linguistics; Association for Computational
Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2389961.2389963>
GAMBHIR, M.; GUPTA, V. Recent automatic text summarization techniques: a
survey. Artificial Intelligence Review, v. 47, p. 1–66,
2017.
GAMON, M. et al. Handbook of automated essay evaluation: Current
applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J.
(Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 251–266.
GAO, T.; YAO, X.; CHEN, D. SimCSE: Simple Contrastive Learning
of Sentence Embeddings. (M.-F. Moens et al., Eds.)Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.552>
GAO, Y. et al. Retrieval-Augmented Generation for Large Language
Models: A Survey., 2024. Disponível em: <https://arxiv.org/abs/2312.10997>
GARCEZ, P. DE M. A organização da
fala-em-interação na sala de aula: controle
social, reprodução de conhecimento,
construção conjunta de conhecimento.
Calidoscópio, v. 4, n. 1, p. 66–80, 2006.
GARCEZ, P. M.; LODER, L. L. Reparo iniciado e
levado a cabo pelo outro na conversa cotidiana em português
do Brasil. DELTA:
Documentação de Estudos em
Lingüı́stica Teórica e
Aplicada, v. 21, p. 279–312, 2005.
GARCIA, E. A. S. et al.
RoBERTaLexPT:
A Legal RoBERTa Model pretrained with
deduplication for Portuguese. (P. Gamallo et al.,
Eds.)Proceedings of the 16th International Conference on Computational
Processing of Portuguese - Vol. 1. Anais...Santiago de
Compostela, Galicia/Spain: Association for Computational Lingustics,
mar. a2024. Disponível em: <https://aclanthology.org/2024.propor-1.38>
GARCIA, G. L. et al. Text Summarization and Temporal Learning
Models Applied to Portuguese Fake News Detection in a Novel
Brazilian Corpus Dataset. (P. Gamallo et al.,
Eds.)Proceedings of the 16th International Conference on Computational
Processing of Portuguese - Vol. 1. Anais...Santiago de
Compostela, Galicia/Spain: Association for Computational Lingustics,
mar. b2024. Disponível em: <https://aclanthology.org/2024.propor-1.9>
GARCIA, G. L.; AFONSO, L. C.; PAPA, J. P. FakeRecogna: a new
brazilian corpus for fake news detection. International
Conference on Computational Processing of the Portuguese Language.
Anais...Springer, 2022.
GARCIA, M. et al. Probing for idiomaticity in vector space
models. Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume.
Anais...Online: Association for Computational
Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.310>
GARCIA, M.; GAMALLO, P. An Entity-Centric Coreference Resolution
System for Person Entities with Rich Linguistic Information.
Proceedings of 25th International Conference on Computational
Linguistics. Anais...Dublin, Ireland: 2014. Disponível
em: <http://aclweb.org/anthology/C/C14/C14-1070.pdf>
GARDENT, C. et al. The WebNLG Challenge: Generating
Text from RDF Data. Proceedings of the 10th
International Conference on Natural Language Generation.
Anais...: INLG’17.Santiago de Compostela, Spain:
Association for Computational Linguistics, 2017. Disponível em: <http://aclweb.org/anthology/W17-3518>
GARGETT, A. et al. The GIVE-2 Corpus of Giving
Instructions in Virtual Environments. Proceedings of LREC-2010.
Anais...Valletta, Malta: ELRA, 2010.
GARIJO, D.; POVEDA-VILLALÓN, M. Best Practices for Implementing
FAIR Vocabularies and Ontologies on the Web.
CoRR, v. abs/2003.13084, 2020.
GATT, A.; BELZ, A. Introducing
Shared Tasks to NLG: The TUNA Shared Task
Evaluation Challenges. Em: KRAHMER, E.; THEUNE, M. (Eds.).
Empirical Methods in Natural Language Generation.
Berlin, Heidelberg: Springer-Verlag, 2010. p. 264–293.
GATT, A.; KRAHMER, E. Survey of the State of the Art in Natural Language
Generation: Core tasks, applications and evaluation. Journal of
Artificial Intelligence Research, v. 61, p. 65–170, 2018.
GATT, A.; SLUIS, I. VAN DER; DEEMTER, K. VAN. Evaluating
algorithms for the generation of referring expressions using a balanced
corpus. Proceedings of ENLG-07.
Anais...Schloss Dagstuhl, Germany: Association for
Computational Linguistics, 2007.
GAUY, M. M.; FINGER, M. Pretrained audio neural networks for
Speech emotion recognition in Portuguese. Proceedings of the
Workshop on Automatic Speech Recognition for Spontaneous and Prepared
Speech & Speech Emotion Recognition in Portuguese co-located with
15th edition of the International Conference on the Computational
Processing of Portuguese (PROPOR 2022). Anais...2022.
GAZZOLA, M.; LEAL, S. E.; ALUISIO, S. M. Predição da
Complexidade Textual de Recursos Educacionais Abertos em
Português. Proceedings of the Brazilian Symposium in
Information and Human Language Technology.
Anais...2019.
GEERAERT, K.; BAAYEN, R. H.; NEWMAN, J. “Spilling the
bag” on idiomatic variation. Em: MARKANTONATOU, S. et
al. (Eds.). Multiword expressions at length and in
depth: Extended papers from the MWE 2017
workshop. Berlin: Language Science Press., 2018.
p. 1–33.
GEHRMANN, S. et al. The gem benchmark: Natural language generation, its
evaluation and metrics. arXiv preprint
arXiv:2102.01672, 2021.
GEORGE, J. F.; KEANE, B. T. Deception Detection by Disinterested
Third-Party Observers. Proceedings of the Credibility
Assessment and Information Quality in Government and Business Symposium,
39th Hawaii International Conference on System Sciences (HICSS).
Anais...Kauai, HI: 2006.
GEURGAS, R.; TESSLER, L. R. Automatic detection of
fake tweets about the COVID-19 Vaccine in Portuguese. Social
Network Analysis and Mining, v. 14, n. 1, p. 55, 8 mar. 2024.
GEVA, M.; GUPTA, A.; BERANT, J. Injecting Numerical Reasoning
Skills into Language Models. (D. Jurafsky et al.,
Eds.)Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Anais...Association for Computational
Linguistics, 2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.89>
GEY, F. et al. GeoCLEF 2006: the
CLEF 2006 Cross-Language
Geographic Information Retrieval
Track Overview. Em: PETERS, C. et al. (Eds.).
Evaluation of Multilingual and
Multi-modal Information Retrieval
- 7th Workshop of the
Cross-Language Evaluation
Forum, CLEF 2006. Alicante,
Spain, September, 2006. Revised
Selected papers. Lecture Notes em Computer
Science. Berlin / Heidelberg: Springer, 2007. v. 4730p. 852–876.
GHANEM, B. et al. IDAT at FIRE2019: Overview of the Track on
Irony Detection in Arabic Tweets. Proceedings of the 11th Forum
for Information Retrieval Evaluation. Anais...2019.
GHOSH, A. et al. SemEval-2015 Task 11:
Sentiment Analysis of Figurative Language in
Twitter. Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval
2015). Anais...2015.
GIAMPICCOLO, D. et al. Overview of the CLEF
2007 Multilingual Question
Answering Track. Em: PETERS, C. et al. (Eds.).
Advances in Multilingual and
Multimodal Information Retrieval:
8th Workshop of the
Cross-Language Evaluation
Forum, CLEF 2007, Budapest,
Hungary, September 19-21, 2007,
Revised Selected Papers.
Lecture Notes em Computer Science. Berlin: Springer, 2008. v. 5152p.
200–236.
GIBBS, R. W.; COLSTON, H. L. The Risks and Rewards of Ironic
Communication. Say not to say: new perspectives on
miscommunication. Anais...2001. Disponível em: <https://api.semanticscholar.org/CorpusID:12510370>
GILES, H. Communication
Accommodation Theory. The International Encyclopedia of
Communication Theory and Philosophy, p. 1–7, 2016.
GINZBURG, J. The
Interactive Stance. [s.l.] Oxford University Press, 2012.
GINZBURG, J.; FERNÁNDEZ, R. M.; SCHLANGEN, D. Disfluencies as intra-utterance
dialogue moves. Semantics and Pragmatics, v. 7, n.
9, p. 64, 2014.
GLAUBER, R. et al. Challenges of an Annotation Task for Open
Information Extraction in Portuguese. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2018.
GLAUBER, R.; CLARO, D. B. A systematic mapping
study on open information extraction. Expert Systems with
Applications, v. 112, p. 372–387, 2018.
GLAUBER, R.; CLARO, D. B.; OLIVEIRA, L. S. Dependency Parser on
Open Information Extraction for Portuguese Texts - DptOIE and
DependentIE on IberLEF. Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the
Spanish Society for Natural Language Processing (SEPLN 2019).
Anais...http://ceur-ws.org/Vol-2421/: CEUR Workshop
Proceedings, a2019.
GLAUBER, R.; CLARO, D. B.; SENA, C. F. DE L. Towards a Pragmatic
Open Information Extraction for Portuguese Text - ICEIS17, InferPortOIE
and PragmaticOIE on IberLEF. Proceedings of the Iberian
Languages Evaluation Forum (IberLEF 2019) co-located with 35th
Conference of the Spanish Society for Natural Language Processing (SEPLN
2019). Anais...http://ceur-ws.org/Vol-2421/: CEUR
Workshop Proceedings, b2019.
GOLDBERG, A. Constructions
at Work: The Nature of Generalization in Language.
[s.l.] Oxford University Press, 2005.
GOLDBERG, A. E. Compositionality. Em: RIEMER, N. (Ed.). The
Routledge Handbook of Semantics. [s.l.] Routledge, 2015.
GOLDBERG, E.; DRIEDGER, N.; KITTREDGE, R. I. Using Natural-Language
Processing to Produce Weather Forecasts. IEEE Expert:
Intelligent Systems and Their Applications, p. 45–53, 1994.
GÔLO, M. P. S. et al. One-class learning
for fake news detection through multimodal variational autoencoders.
Engineering Applications of Artificial Intelligence, v.
122, p. 106088, 2023.
GOLUB, G. H.; REINSCH, C. Singular Value Decomposition and Least
Squares Solutions. [s.l.] Numer. Math 14, 1970. p. 403–420
GOMES, D. S.; COELHO, O.; MORGADO, C. As
implicações da
espacialização como categoria
analı́tica da conversa na Lı́ngua Brasileira de
Sinais e na Lı́ngua Gestual Portuguesa.
Sensos-e, v. 7, n. 3, p. 57–69, 2020.
GOMES, J. R. S. et al. Deep Learning Brasil at ABSAPT 2022:
Portuguese Transformer Ensemble Approaches. Proceedings of the
Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the
Conference of the Spanish Society for Natural Language Processing
(SEPLN 2022), A Coruña, Spain,
September 20, 2022. Anais...2022.
GONÇALO OLIVEIRA, H. et al. Avaliação
à medida no Segundo HAREM. (C. Mota, D. Santos,
Eds.)Desafios na avaliação conjunta do
reconhecimento de entidades mencionadas: O Segundo HAREM.
Anais...Linguateca, 2008.
GONÇALO OLIVEIRA, H. Beyond the automatic construction of a
lexical ontology for Portuguese: resources developed in the
scope of Onto.PT. Proceedings of Workshop on Tools
and Resources for Automatically Processing Portuguese and Spanish.
Anais...: TorPorEsp.São Carlos, SP, Brasil: BDBComp,
2014. Disponível em: <http://www.lbd.dcc.ufmg.br/colecoes/torporesp/2014/004.pdf>
GONÇALO OLIVEIRA, H. et al. Using Lucene for Developing a
Question-Answering Agent in Portuguese. (R. Rodrigues et
al., Eds.)8th Symposium on Languages, Applications and Technologies
(SLATE 2019). Anais...: Open Access Series em
Informatics (OASIcs).Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. Disponível em: <https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2019.2>
GONÇALO OLIVEIRA, H. et al. A Brief Survey of Textual Dialogue
Corpora. Proceedings of the Thirteenth Language Resources and
Evaluation Conference. Anais...Marseille, France:
European Language Resources Association, jun. 2022. Disponível em:
<https://aclanthology.org/2022.lrec-1.135>
GONÇALO OLIVEIRA, H.; GOMES, P. ECO and
Onto-PT: a flexible approach for creating a Portuguese Wordnet
automatically. Language Resources and Evaluation,
v. 48, n. 2, p. 373–393, 2014.
GONÇALVES, M. et al. Avaliação de recursos
computacionais para o português. Linguamática, v.
12, n. 2, p. 51–68, 2020.
GONÇALVES, S. C. L. Projeto ALIP (Amostra
Linguística do Interior Paulista) e banco de dados Iboruna: 10 anos de
contribuição com a descrição do português brasileiro.
Estudos Linguísticos (São Paulo. 1978), v. 48, n. 1, p.
276–297, 2019.
GONÇALVES, T. et al. Clinical Screening Prediction in the Portuguese
National Health Service: Data Analysis, Machine Learning Models,
Explainability and Meta-Evaluation. Future Internet, v.
15, n. 1, p. 26, 2023.
GONG, Z. et al. Continual Pre-training of Language Models for
Math Problem Understanding with Syntax-Aware Memory Network.
(S. Muresan, P. Nakov, A. Villavicencio, Eds.)Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022. Anais...Association for Computational
Linguistics, 2022. Disponível em: <https://doi.org/10.18653/v1/2022.acl-long.408>
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep
Learning. [s.l.] MIT Press, 2016. v. 1
GOODING, S.; TASLIMIPOOR, S.; KOCHMAR, E. Incorporating
Multiword Expressions in Phrase Complexity Estimation.
Proceedings of the 1st Workshop on Tools and Resources to Empower People
with REAding DIfficulties (READI). Anais...Marseille,
France: European Language Resources Association, 2020. Disponível em:
<https://aclanthology.org/2020.readi-1.3>
GORMAN, K.; BEDRICK, S. We Need to Talk about Standard
Splits. Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.
Anais...Florence, Italy: Association for Computational
Linguistics, jul. 2019. Disponível em: <https://aclanthology.org/P19-1267>
GRAESSER, A. C. et al. Coh-Metrix: Analysis of text on cohesion and
language. Behavior Research Methods, Instruments, n Computer -
Springer, p. 193–202, 2004.
GRAESSER, A. C.; MCNAMARA, D. S.; KULIKOWICH, J. M. Coh-Metrix:
Providing Multilevel Analyses of Text Characteristics.
Educational Researcher Vol. 40, N. 5, p. 223–234, 2011.
GRAHAM, Y. et al. Is all that Glitters in Machine Translation
Quality Estimation really Gold? Proceedings of
COLING 2016: Technical Papers.
Anais...Osaka, Japan: The COLING 2016 Organizing
Committee, dez. 2016. Disponível em: <https://www.aclweb.org/anthology/C16-1294>
GRALIŃSKI, F. et al. Computational Lexicography of Multi-Word
Units. How Efficient Can It Be? Proceedings of the 2010
Workshop on Multiword Expressions: from Theory to Applications.
Anais...Beijing, China: Coling 2010 Organizing
Committee, ago. 2010. Disponível em: <https://aclanthology.org/W10-3702>
GRAVES, A.; MOHAMED, A.; HINTON, G. Speech recognition
with deep recurrent neural networks. 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing.
Anais...2013.
GREEN, S.; MARNEFFE, M.-C. DE; MANNING, C. D. Parsing Models for
Identifying Multiword Expressions. Computational
Linguistics, v. 39, n. 1, p. 195–227, mar. 2013.
GRÉGOIRE, N. DuELME:
a Dutch electronic lexicon of multiword expressions.
Language Resources and Evaluation, v. 44, p. 23–39,
2010.
GREGOROMICHELAKI, E. et al. Incrementality and
intention-recognition in utterance processing. Dialogue
& Discourse, v. 2, n. 1, p. 199–233, 2011.
GRICE, H. P. Logic and Conversation. Em: Syntax and Semantics:
Vol. 3: Speech Acts. [s.l.] Academic Press, 1975.
GRIES, S. C. Estatística
com R para a Linguística. [s.l.] FALE/ UFMG, 2019.
GRIS, L. R. S. et al. Bringing NURC/SP to digital
life: the role of open-source automatic speech recognition
models. Anais do XIX Encontro Nacional de Inteligência
Artificial e Computacional. Anais...Porto Alegre, RS,
Brasil: SBC, 2022. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/22793>
GRIS, L. R. S. et al. Evaluating OpenAI’s Whisper ASR for
Punctuation Prediction and Topic Modeling of life histories of the
Museum of the Person., 2023. Disponível em: <https://arxiv.org/abs/2305.14580>
GRISHMAN, R.; SUNDHEIM, B. Message
Understanding Conference- 6: A Brief
History. COLING 1996 Volume 1: The 16th
International Conference on Computational Linguistics.
Anais...1996. Disponível em: <https://aclanthology.org/C96-1079>
GROSS, M. Lexicon - Grammar The Representation of Compound
Words. Coling 1986 Volume 1: The 11th International Conference
on Computational Linguistics. Anais...1986. Disponível
em: <https://aclanthology.org/C86-1001>
GROSZ, B. J.; JOSHI, A. K.; WEINSTEIN, S. Centering: A framework for
modelling the local coherence of discourse. IRCS Technical
Reports Series, 1995.
GROSZ, B. J.; SIDNER, C. L. Attention, intentions, and the
structure of discourse. Computational linguistics,
v. 12, n. 3, p. 175–204, 1986.
GROUP, E. E. W. et al. EAGLES Evaluation of Natural Language
Processing Systems - Final Report. ISSCO, 1996. Disponível em:
<https://www.issco.unige.ch/en/research/projects/eagles/index.html>
GRUBER, A.; WEISS, Y.; ROSEN-ZVI, M. Hidden Topic Markov
Models. Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics. Anais...:
Proceedings of Machine Learning Research.San Juan, Puerto Rico: PMLR,
mar. 2007.
GRUBER, T. R. Siri, A Virtual Personal Assistant-Bringing
Intelligence to the Interface. Semantic Technologies
Conference. Anais...2009.
GRUPPI, M.; HORNE, B. D.; ADALI, S. NELA-GT-2019:
A Large Multi-Labelled News Dataset for The Study of
Misinformation in News Articles. CoRR, v.
abs/2003.08444, p. 1–5, 2020.
GRUPPI, M.; HORNE, B. D.; ADALI, S. NELA-GT-2020:
A Large Multi-Labelled News Dataset for The Study of
Misinformation in News Articles. CoRR, v.
abs/2102.04567, p. 1–6, 2021.
GUARINO, N.; GUIZZARDI, G. We need to Discuss the
Relationship: Revisiting Relationships as Modeling
Constructs. Proceedings of the 27th International
Conference on Advanced Information Systems Engineering (CAISE
2015). Anais...Springer-Verlag,
2015.
GUERINO, G.; VALENTIM, N. “Is anybody
there?”: Exploring the use and difficulties of
Brazilians with Conversational Systems. Anais do
XIX Simpósio Brasileiro sobre Fatores Humanos em Sistemas
Computacionais. Anais...Porto Alegre, RS, Brasil: SBC,
2020. Disponível em: <https://sol.sbc.org.br/index.php/ihc/article/view/13835>
GUIMARÃES, G. M. C. et al. Legal Document
Segmentation and Labeling Through Named Entity Recognition
Approaches. Journal of Information and Data
Management, v. 15, n. 1, 2024.
GUIMARÃES, J. A. C.; SANTOS, J. C. G. A ementa
jurisprudencial como resumo informativo em um domı́nio
especializado: aspectos estruturais. Brazilian Journal of
Information Science: research trends, v. 10, n. 3, 2016.
GUIMARÃES, S. S. et al. Characterizing Toxicity on Facebook
Comments in Brazil. Proceedings of the Brazilian Symposium on
Multimedia and the Web. Anais...2020.
GUIZZARDI, G. Ontology, Ontologies and the “I” of
FAIR. Data Int., v. 2, n. 1-2, p. 181–191, 2020.
GULATI, A. et al. Conformer:
Convolution-augmented Transformer for Speech Recognition.
CoRR, v. abs/2005.08100, 2020.
GULDEN, C. et al. Extractive
summarization of clinical trial descriptions. International
Journal of Medical Informatics, v. 129, p. 114–121, 2019.
GUMIEL, Y. B. et al. Temporal
Relation Extraction in Clinical Texts: A Systematic Review. v. 54,
n. 7, set. 2021.
GUO, Q. et al. P2: A Plan-and-Pretrain Approach for Knowledge
Graph-to-Text Generation. Proceedings of the 3rd International
Workshop on Natural Language Generation from the Semantic Web (WebNLG+).
Anais...2020.
GURURANGAN, S. et al. Annotation Artifacts in Natural Language
Inference Data. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers).
Anais...New Orleans, Louisiana: Association for
Computational Linguistics, jun. 2018. Disponível em: <https://aclanthology.org/N18-2017>
GURURANGAN, S. et al. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.
Anais...Online: Association for Computational
Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.740>
HABIBI, M. et al. Deep learning with word embeddings improves
biomedical named entity recognition.
Bioinformatics, v. 33, n. 14, p. i37–i48, 2017.
HAENDCHEN FILHO, A. et al. An approach to evaluate adherence to
the theme and the argumentative structure of essays.
International Conference on Knowledge-Based Intelligent Information
& Engineering Systems. Anais...2018.
HAENDCHEN FILHO, A. et al. Imbalanced Learning Techniques for Improving
the Performance of Statistical Models in Automated Essay Scoring.
Procedia Computer Science, v. 159, p. 764–773, jan.
2019.
HAGÈGE, C.; BAPTISTA, J.; MAMEDE, N. Portuguese
Temporal Expressions Recognition:
from TE characterization to an effective TER
module implementation. The 7th
Brazilian Symposium in
Information and Human Language
Technology (STIL 2009).
Anais...São Carlos, Brasil: 2009. Disponível em: <http://www.nilc.icmc.usp.br/til/stil2009_English/Proceedings/stil/Hagege-57697_1.pdf>
HAGEMEIJER, T. et al. The PALMA Corpora of
African Varieties of Portuguese.
Proceedings of the Thirteenth Language Resources and Evaluation
Conference. Anais...Marseille, France: European
Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.539>
HAILU, T. T.; YU, J.; FANTAYE, T. G. A framework for word embedding
based automatic text summarization and evaluation.
Information, v. 11, n. 2, p. 78, 2020.
HAKUTA, K. Handbook of Automated Essay Evaluation: Current Applications
and New Directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.]
Routledge/Taylor & Francis Group, 2013. p. 347–353.
HALL, J. A Probabilistic
Part-of-Speech Tagger with
Suffix Probabilities. tese de
doutorado—[s.l: s.n.].
HALLIDAY, M. A. K.; MATTHIESSEN, C. M. I. M. Construing
Experience Through Meaning: A Language Based Approach to
Cognition. [s.l.] Continuum, 1999.
HAPKE, H.; HOWARD, C.; LANE, H. Natural Language Processing in
Action: Understanding, analyzing, and generating text with
Python. [s.l.] Manning, 2019.
HARMAN, D. The
Text Retrieval Conferences (TRECs): Providing a Test-Bed for Information
Retrieval Systems. Bulletin of the American Society
for Information Science, v. 24, n. 4, p. 11–13, 1998.
HARRIS, Z. S. Distributional
Structure. Word, v. 10, n. 2-3, p. 146–162, 1954.
HARTMANN, N. S. et al. Portuguese word embeddings: Evaluating on
word analogies and natural language tasks. Proceedings of
Symposium in Information and Human Language Technology.
Anais...[S.l.: s.n.]: 2017.
HARTMANN, N. S.; ALUÍSIO, S. M. Adaptação Lexical Automática
em Textos Informativos do Português Brasileiro para o Ensino
Fundamental. Linguamática, v. 12, n. 2, p. 3–27,
dez. 2020.
HARTMANN PEIXOTO, F. Projeto
Victor: relato do desenvolvimento da Inteligência Artificial na
Repercussão Geral do Supremo Tribunal Federal. Revista
Brasileira de Inteligência Artificial e Direito - RBIAD, v. 1,
n. 1, p. 1–22, 2020.
HASEGAWA, T.; SEKINE, S.; GRISHMAN, R. Discovering relations
among named entities from large corpora. Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics
(acl-04). Anais...2004.
HASSAN, H. et al. Achieving Human Parity on Automatic
Chinese to English News Translation.
arXiv preprint 1803.05567, 2018.
HAUCH, V. et al. Linguistic Cues to Deception Assessed by
Computer Programs: A Meta-analysis. Proceedings of the Workshop
on Computational Approaches to Deception Detection.
Anais...2012.
HAUSSER, R. The coordinator’s final report on the first
Morpholympics. Em: HAUSSER, R. (Ed.). Linguistische
Verifikation: Dokumentation zur Ersten Morpholympics 1994.
[s.l.] Max Niemeyer Verlag, 1996. p. 167–181.
HAVASI, C.; SPEER, R.; ALONSO, J. ConceptNet 3: a Flexible,
Multilingual Semantic Network for Common Sense Knowledge.
Recent Advances in Natural Language Processing.
Anais...Borovets, Bulgaria: To appear, 2007.
HAVIV, A. et al. Understanding Transformer Memorization Recall
Through Idioms. Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics.
Anais...Dubrovnik, Croatia: Association for
Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.19>
HAYES, P. Expanding the Horizons of Natural Language
Interfaces. 18th Annual Meeting of the Association for
Computational Linguistics. Anais...Philadelphia,
Pennsylvania, USA: Association for Computational Linguistics, jun. 1980.
Disponível em: <https://aclanthology.org/P80-1019>
HAYES, P. J.; REDDY, D. R. Steps toward
graceful interaction in spoken and written man-machine
communication. International Journal of Man-Machine
Studies, v. 19, n. 3, p. 231–284, 1983.
HE, K. et al. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016. Anais...IEEE
Computer Society, 2016. Disponível em: <https://doi.org/10.1109/CVPR.2016.90>
HE, P. et al. Deberta: decoding-Enhanced Bert with Disentangled
Attention. 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. Anais...OpenReview.net, 2021. Disponível em:
<https://openreview.net/forum?id=XPZIaotutsD>
HEALEY, P. G.; MILLS, G. J. A Dialogue Experimentation
Toolkit. Proceedings of the Annual Meeting of the Cognitive
Science Society. Anais...2009. Disponível em: <https://dialoguetoolkit.github.io/chattool/>
HEARST, M. A. Automatic acquisition of hyponyms from large text
corpora. Proceedings of the 14th conference on Computational
linguistics-Volume 2. Anais...Association for
Computational Linguistics, 1992.
HEE, C. V.; LEFEVER, E.; HOSTE, V.
SemEval-2018 Task 3: Irony Detection
in English Tweets. Proceedings of the 12th
International Workshop on Semantic Evaluation.
Anais...2018.
HEEMAN, P. A. Dialogue transcription tools - TRAINS Technical
Note 94-1. [s.l.] University of Rochester, 1995. Disponível em:
<https://dl.acm.org/doi/abs/10.5555/898276>.
HEEMAN, P. A.; HIRST, G. Collaborating on Referring
Expressions. Computational Linguistics, v. 21, n.
3, p. 351–382, 1995.
HEIKKILÄ, M. Why you shouldn’t trust AI search engines.
Disponível em: <https://www.technologyreview.com/2023/02/14/1068498/why-you-shouldnt-trust-ai-search-engines/>.
Acesso em: 9 abr. 2023.
HEIKKILÄ, M. The viral AI avatar app Lensa undressed me—without
my consent. Disponível em: <
https://www.technologyreview.com/2022/12/12/1064751/the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/>.
Acesso em: 28 ago. 2023.
HEIM, I. File Change Semantics and the Familiarity Theory of
Definiteness. Em: Formal Semantics. [s.l.]
Wiley-Blackwell, 2008. p. 223–248.
HEINRICH, T.; MARCHI, F. TeamUFPR at ABSAPT 2022:
Aspect Extraction with CRF and BERT.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
HELDNER, M.; EDLUND, J. Pauses, gaps and
overlaps in conversations. Journal of Phonetics, v.
38, n. 4, p. 555–568, 2010.
HENDERSON, P. et al. Ethical challenges in data-driven dialogue
systems. Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society. Anais...2018. Disponível em:
<https://doi.org/10.1145/3278721.3278777>
HENDRICKX, I. et al. SemEval-2010 Task 8: Multi-Way
Classification of Semantic Relations between Pairs of Nominals.
Proceedings of the 5th International Workshop on Semantic Evaluation.
Anais...2010. Disponível em: <http://www.aclweb.org/anthology/S10-1006>
HENDRYCKS, D. et al. Measuring Massive Multitask Language
Understanding. Proceedings of the International Conference on
Learning Representations (ICLR). Anais...b2021.
HENDRYCKS, D. et al. Aligning AI With Shared Human
Values. Proceedings of the International Conference on Learning
Representations (ICLR). Anais...a2021.
HEUSDEN, R. VAN; KAMPS, J.; MARX, M. Neural Coreference Resolution
for Dutch Parliamentary Documents with the DutchParliament Dataset.
Data, v. 8, n. 2, 2023.
HICKE, Y. et al. Assessing the efficacy of large language models in
generating accurate teacher responses. arXiv preprint
arXiv:2307.04274, 2023.
HILGERT, J. G. A
construção do sentido e da
compreensão na conversa, mostrada em procedimentos
meta-enunciativos. Linha D’Água, v.
25, n. 2, p. 107–129, 2012.
HILGERT, J. G. A
emergência da compreensão na conversa,
mostrada no trabalho colaborativo de
otimização de enunciados. Todas as
Letras-Revista de Lı́ngua e Literatura, v. 16, n.
1, 2014.
HIRSCHMAN, L. The evolution of Evaluation: Lessons from the
Message Understanding Conferences. Computer Speech and
Language, v. 12, n. 4, p. 281–305, 1998.
HIRSCHMAN, L.; THOMPSON, H. S. Overview of Evaluation
in Speech and Natural Language Processing. Em: Survey of the
State of the Art in Human Language Technology. USA: Cambridge
University Press, 1997. p. 409–414.
HITZLER, A. H. Y. A. M. S. M. A. G. B. A. W. R. A. A. S. A. A. H. M. A.
K. T. A. J. M. M. A. A. M. A. J. P. A. P. Multimodal mental
health analysis in social media. PLOS ONE, v. 15,
n. 4, p. 1–27, 2020.
HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma, Technische Universität
München, v. 91, n. 1, p. 31, 1991.
HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term
Memory. Neural Computation, v. 9, n. 8, p.
1735–1780, nov. 1997.
HOFFMANN, J. et al. Training
Compute-Optimal Large Language Models. CoRR, v.
abs/2203.15556, 2022.
HOFMANN, T. Probabilistic Latent Semantic Indexing.
Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’99). Anais...New York,
NY, USA: Association for Computing Machinery, 1999.
HOLTZMAN, A. et al. The Curious Case of Neural Text
Degeneration. ICLR. Anais...OpenReview.net,
2020. Disponível em: <http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20>
HORA, N. DA. Coded Bias: linguagem acessível para entender
vieses em algoritmos. Disponível em: <
https://mittechreview.com.br/coded-bias-linguagem-acessivel-para-entender-vieses-em-algoritmos/>.
Acesso em: 7 abr. 2023.
HORA, N. DA. Ética em IA: a pergunta que não estamos
fazendo. Disponível em: <https://mittechreview.com.br/etica-em-ia-a-pergunta-que-nao-estamos-fazendo/>.
Acesso em: 7 abr. 2023.
HORNIK, K.; STINCHCOMBE, M. B.; WHITE, H. Multilayer
feedforward networks are universal approximators. Neural
Networks, v. 2, n. 5, p. 359–366, 1989.
HORSMANN, T.; ZESCH, T. Assigning Fine-grained
PoS Tags based on High-precision
Coarse-grained Tagging. Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Anais...Osaka, Japan: The COLING 2016
Organizing Committee, dez. 2016. Disponível em: <https://aclanthology.org/C16-1032>
HOU, Y.; MARKERT, K.; STRUBE, M. A Rule-Based System for
Unrestricted Bridging Resolution: Recognizing Bridging Anaphora and
Finding Links to Antecedents. Proceedings of the Conference on
Empirical Methods in Natural Language Processing.
Anais...Doha, Qatar: 2014. Disponível em: <http://aclweb.org/anthology/D/D14/D14-1222.pdf>
HOULSBY, N. et al. Parameter-Efficient Transfer Learning for
NLP. (K. Chaudhuri, R. Salakhutdinov,
Eds.)Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Anais...: Proceedings of
Machine Learning Research.PMLR, 2019. Disponível em: <http://proceedings.mlr.press/v97/houlsby19a.html>
HOVY, E.; KING, M.; POPESCU-BELIS, A. An introduction to MT
evaluation. Proceedings of Machine Translation Evaluation:
Human Evaluators meet Automated Metrics. Workshop at the LREC 2002
Conference. Las Palmas, Spain. Anais...2002.
HOWARD, J.; RUDER, S. Universal Language Model Fine-tuning for
Text Classification. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <^5^>
HSU, W.-N. et al. Hubert: Self-supervised speech representation learning
by masked prediction of hidden units. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, v. 29, p. 3451–3460,
2021.
HU, E. J. et al. LoRA: Low-Rank Adaptation of Large Language
Models. The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29,
2022. Anais...OpenReview.net, 2022. Disponível em:
<https://openreview.net/forum?id=nZeVKeeFYf9>
HU, M.; LIU, B. Mining Opinion Features in Customer
Reviews. Proceedings of the 19th National Conference on
Artifical Intelligence. Anais...2004.
HUANG, J.-T.; HASEGAWA-JOHNSON, M.; SHIH, C. Unsupervised
prosodic break detection in Mandarin speech. Proc.
Speech Prosody 2008. Anais...2008.
HUANG, X.; ACERO, A.; HON, H. W. Spoken Language
Processing: A Guide to Theory, Algorithm, and System
Development. [s.l.] Prentice Hall PTR, 2001.
HUSSAIN, A. S.; THOMAS, A. Large Language Models for Judicial
Entity Extraction: A Comparative Study., 2024. Disponível em:
<https://arxiv.org/abs/2407.05786>
HUTCHINS, J. Towards a definition of example-based machine
translation., Proceedings of Second
Workshop on Example-Based
Machine Translation;
Anais...2005.
HUTCHINS, W. Machine Translation: A Concise History. Journal of
Translation Studies: Special Issue on The Teaching of Computer-aided
Translation, v. 13, p. 1–2, 2010.
HUTCHINS, W. J. Machine
translation over fifty years. Histoire, Epistemologie,
Langage, v. XXII, n. 1, p. 7–31, 2001.
HWANG, A.; HIDEY, C. Confirming the Non-compositionality of
Idioms for Sentiment Analysis. Proceedings of the Joint
Workshop on Multiword Expressions and WordNet (MWE-WN 2019).
Anais...Florence, Italy: Association for Computational
Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5114>
IFTIKHAR, A.; UL QOUNAIN JAFFRY, S. W.; MALIK, M. K. Information Mining
From Criminal Judgments of Lahore High Court. IEEE
Access, v. 7, p. 59539–59547, 2019.
IGNAT, O. et al. A PhD Student’s Perspective on Research in NLP
in the Era of Very Large Language Models., 2023. Disponível em:
<https://arxiv.org/abs/2305.12544>
ILARI, R.; GERALDI, J. W. Semântica. [s.l.] Ética,
1985.
IMOTIONS. Eye Tracking - The Complete Pocket Guide.
[s.l.] www.imotions.com, 2017.
INFOBASE. Inteligência Artificial e a perpetuação do
racismo. Disponível em: <https://infobase.com.br/inteligencia-artificial-e-a-perpetuacao-do-racismo/>.
Acesso em: 28 ago. 2023.
IPM. INAF
Brasil 2018: Indicador de Alfabetismo Funcional -
Resultados Preliminares. Instituto Paulo
Montenegro, 2018.
ITO, K. The LJ speech dataset.
https://keithito.com/LJ-Speech-Dataset/, 2017.
IVGI, M.; SHAHAM, U.; BERANT, J. Efficient Long-Text
Understanding with Short-Text Models. Transactions of the
Association for Computational Linguistics, v. 11, p. 284–299,
2023.
JACINTHO, F.; PENHA, A. Interfaces
conversacionais: Análise de tarefas para Siri e
Google Now. Ergodesign &
HCI, v. 4, n. 2, p. 72–81, 2016.
JACKSON, P.; MOULINIER, I. Natural Language Processing for
Online Applications – Text retrieval, extraction and
categorization. [s.l.] John Benjamins, 2002.
JACOBS, R. A. et al. Adaptive mixtures of local experts. Neural
computation, v. 3, n. 1, p. 79–87, 1991.
JACOBSEN, A. et al. FAIR principles: interpretations and
implementation considerations. Data
intelligenceMIT Press One Rogers Street, Cambridge, MA
02142-1209, USA journals-info …, 2020.
JAHAN, M. S.; OUSSALAH, M. A systematic review of hate speech automatic
detection using natural language processing.
Neurocomputing, 2023.
JAIN, S.; WALLACE, B. C. Attention is not Explanation.
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).
Anais...Minneapolis, Minnesota: Association for
Computational Linguistics, 2019. Disponível em: <https://aclanthology.org/N19-1357>
JARGAS, A. M. Expressões
Regulares - 5a edição: Uma Abordagem
Divertida. [s.l.] Novatec Editora, 2016.
JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems
(TOIS), v. 20, n. 4, p. 422–446, 2002.
JEON, J. H.; LIU, Y. Semi-supervised Learning for Automatic
Prosodic Event Detection Using Co-training Algorithm.
Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP.
Anais...Suntec, Singapore: Association for
Computational Linguistics, ago. 2009. Disponível em: <https://aclanthology.org/P09-1061>
JERONIMO, C. et al. Characterization of Fake News
Based on Subjectivity Lexicons. Journal of Data
Intelligence, v. 1, p. 419–441, dez. 2020.
JI, Z. et al. Survey of
Hallucination in Natural Language Generation. ACM Comput.
Surv., v. 55, n. 12, mar. 2023.
JIANG, A. Q. et al. Mistral 7B., 2023. Disponível em:
<https://arxiv.org/abs/2310.06825>
JIANG, R.; BANCHS, R. E.; LI, H. Evaluating and Combining
Named Entity Recognition Systems. Proceedings of
the Sixth Named Entity Workshop, joint with 54th ACL.
Anais...2016. Disponível em: <https://www.aclweb.org/anthology/W16-2703.pdf>
JIANG, S. et al. Multi-Ontology Refined
Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic
representation model for biomedical concepts. Journal of
Biomedical Informatics, v. 111, p. 103581, 2020.
JIANG, S. et al. Irony Detection in the Portuguese Language
using BERT. Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2021) co-located with the Conference of the
Spanish Society for Natural Language Processing (SEPLN
2021), XXXVII International Conference of the Spanish
Society for Natural Language Processing., Málaga, Spain,
September, 2021. Anais...2021.
JIN, X. et al. Lifelong Pretraining: Continually Adapting
Language Models to Emerging Corpora. Proceedings of the 2022
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.
Anais...Seattle, United States: Association for
Computational Linguistics, jul. 2022. Disponível em: <https://aclanthology.org/2022.naacl-main.351>
JOHNSON, K. Acoustic and
Auditory Phonetics. [s.l.] Wiley, 2011.
JOHNSTONE, M. A.-M. A. T. In an Absolute State:
Elevated Use of Absolutist Words Is a Marker Specific to Anxiety,
Depression, and Suicidal Ideation. Clinical Psychological
Science, v. 6, n. 4, p. 529–542, 2018.
JONES, K. H. et al. Toward the Development of Data Governance Standards
for Using Clinical Free-Text Data in Health Research:
Position Paper. J Med Internet Res, v. 22, n. 6, p.
e16760, jun. 2020.
JONES, K. S. What might be in a summary? Information
retrieval, v. 93, n. 1, p. 9–26, 1993.
JONNALAGADDA, S.; GONZALEZ, G. Biosimplify: an open source sentence
simplification engine to improve recall in automatic biomedical
information extraction. AMIA Annual Symposium
Proceedings, p. 351–356, 2010.
JOOS, M. Description of
language design. Journal of Acoustical Society of America -
JASA, v. 22, p. 701–708, 1950.
JOSÉ, M. M. et al. Integrating Question Answering and
Text-to-SQL in Portuguese. (V. Pinheiro et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2022.
JOSHI, M. et al. BERT for Coreference Resolution:
Baselines and Analysis. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...Hong Kong, China: Association
for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1588>
JOSHI, M. et al. SpanBERT:
Improving Pre-training by Representing and Predicting Spans.
Transactions of the Association for Computational
Linguistics, v. 8, p. 64–77, 2020.
JOYCE, J. M. Kullback-Leibler
Divergence. Em: LOVRIC, M. (Ed.). International Encyclopedia
of Statistical Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p. 720–722.
JULIÃO, A. Algoritmo do Google: Veja o impacto que tem no
SEO. Disponível em: <https://blog.ajestrategia.com.br/algoritmo-do-google-veja-o-impacto-que-tem-no-seo/>.
JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. 3rd. ed. USA: Prentice Hall PTR, 2023.
JUSTIÇA - CNJ, C. N. DE. Conselho Nacional de Justiça — Justiça
em Números. https://www.cnj.jus.br/pesquisas-judiciarias/justica-em-numeros/,
maio 24DC.
KAHANE, S.; COURTIN, M.; GERDES, K. Multi-word annotation in
syntactic treebanks - Propositions for Universal
Dependencies. Proceedings of the 16th
International Workshop on Treebanks and Linguistic Theories.
Anais...Prague, Czech Republic: 2017. Disponível em:
<https://aclanthology.org/W17-7622>
KAHLE, P. et al. Transkribus-a service platform for
transcription, recognition and retrieval of historical
documents. 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR). Anais...IEEE, 2017.
KAMBHATLA, N. Combining lexical, syntactic, and semantic
features with maximum entropy models for information
extraction. Proceedings of the ACL interactive poster and
demonstration sessions. Anais...2004.
KANDO, N. NTCIR and Its Background – Evaluation Workshop on
Information Access Technologies and Test Collections.
Journal of the Japanese Society for Artificial
Intelligence, v. 17, n. 3, p. 296–300, 2002.
KANITZ, A.; FRANK, I. Aprendizagem
enquanto produção conjunta de conhecimento:
avançando tarefas e alcançando entendimentos
satisfatórios na
fala-em-interação. Revista
Brasileira de Linguı́stica Aplicada, v. 14, p.
111–140, 2014.
KANITZ, A.; LUZ, R. L. Letramento multimodal
e construção conjunta de conhecimento na
fala-em-interação. Revista
Brasileira de Linguı́stica Aplicada, v. 19, p.
603–633, 2019.
KANTAYYA, S. Coded Bias. Disponível em: < https://www.codedbias.com>.
Acesso em: 7 abr. 2023.
KAPOOR, A. et al. HLDC:
Hindi Legal Documents Corpus. Findings of the
Association for Computational Linguistics: ACL 2022.
Anais...Association for Computational Linguistics,
2022.
KARPAS, E. et al. MRKL Systems: A modular, neuro-symbolic
architecture that combines large language models, external knowledge
sources and discrete reasoning., 2022. Disponível em: <https://arxiv.org/abs/2205.00445>
KATCHAPAKIRIN, K. et al. Facebook Social Media
for Depression Detection in the Thai Community. 15th
International Joint Conference on Computer Science and Software
Engineering (JCSSE). Anais...2018.
KATO, A.; SHINDO, H.; MATSUMOTO, Y. Construction of an
English Dependency Corpus incorporating Compound Function
Words. Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16).
Anais...Portorož, Slovenia: European
Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1263>
KE, Z. et al. Continual Pre-training of Language
Models., 2023. Disponível em: <https://arxiv.org/abs/2302.03241>
KENEDY, E.; OTHERO, G. DE Á. Para conhecer sintaxe. São
Paulo: Contexto, 2018.
KHAYRALLAH, H.; KOEHN, P. On the Impact of Various Types of
Noise on Neural Machine Translation. Proceedings of the 2nd
Workshop on Neural Machine Translation and Generation.
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/W18-2709>
KIANPOUR, M.; WEN, S.-F. Timing Attacks on Machine Learning:
State of the Art. Intelligent Systems Conference.
Anais...Springer, 2020.
KILGARRIFF, A. I
Don’t Believe in Word Senses. Computers and the
Humanities, 1997.
KILGARRIFF, A. Thesauruses for Natural Language
Processing. Proceedings of Natural Language Processing and
Knowledge Engineering. Anais...2003. Disponível em:
<https://www.kilgarriff.co.uk/Publications/2003-K-Beijing-thes4NLP.pdf>
KIM, J. et al. Glow-TTS: A Generative Flow for
Text-to-Speech via Monotonic Alignment Search. arXiv preprint
arXiv:2005.11129, 2020.
KIM, J.; KONG, J.; SON, J. Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech.
International Conference on Machine Learning.
Anais...PMLR, 2021.
KIM, S. N. et al. SemEval-2010 Task 5
: Automatic Keyphrase Extraction from Scientific Articles.
Proceedings of the 5th International Workshop on Semantic Evaluation.
Anais...Uppsala, Sweden: Association for Computational
Linguistics, jul. 2010. Disponível em: <https://aclanthology.org/S10-1004>
KINCAID, J. P. et al. Derivation of new readability formulas (automated
readability index, fog count, and flesch reading ease formula) for Navy
enlisted personnel. Research Branch Report, p. 8–75,
1975.
KING, M. Evaluating
Natural Language Processing Systems. Communications of the
ACM, v. 39, n. 1, p. 73–79, jan. 1996.
KIPPER, K.; DANG, H. T.; PALMER, M. Class-Based Construction of
a Verb Lexicon. Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence.
Anais...AAAI Press, 2000.
KIRK, H. et al. Handling and Presenting Harmful Text in
NLP Research. Findings of the Association for
Computational Linguistics: EMNLP 2022. Anais...Abu
Dhabi, United Arab Emirates: Association for Computational Linguistics,
dez. 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.35>
KIRSTAIN, Y.; RAM, O.; LEVY, O. Coreference Resolution without
Span Representations. Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short
Papers). Anais...2021.
KITZINGER, C. Repair. Em:
The handbook of conversation analysis. [s.l.] Wiley
Online Library, 2012. p. 229–256.
KLATT, D. H. Software for a cascade/parallel formant synthesizer.
the Journal of the Acoustical Society of America, v.
67, n. 3, p. 971–995, 1980.
KLIE, J.-C. et al. The INCEpTION Platform: Machine-Assisted and
Knowledge-Oriented Interactive Annotation. Proceedings of the
27th International Conference on Computational Linguistics: System
Demonstrations. Anais...Santa Fe, USA: Association for
Computational Linguistics, 2018. Disponível em: <http://tubiblio.ulb.tu-darmstadt.de/106270/>
KNUTH, D. E. Fundamental Algorithms. The Art of Computer
Programming. 3. ed. [s.l.] Addison-Wesley, 1997. v. 1
KOCH, I. G. V. O texto e a construção do sentido. 7.
ed. Campinas, SP: Contexto, 2003.
KOCH, I. G. V. Digressão
e Relevância Conversacional. Cadernos de Estudos
Linguísticos, v. 37, p. 81–91, 2012.
KOCH, I. G. V.; TRAVAGLIA, L. Texto e
coerência. 13. ed. [s.l.] Cortez, 2012.
KOEHN, P. et al. Moses: Open Source Toolkit for
Statistical Machine Translation. Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions.
Anais...Prague, Czech Republic: Association for
Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/P07-2045>
KOEHN, P. Statistical Machine
Translation. [s.l.] Cambridge University Press, 2009.
KOEHN, P. Neural
Machine Translation. [s.l.] Cambridge University Press,
2020.
KOEHN, P.; OCH, F. J.; MARCU, D. Statistical phrase-based
translation. Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology - NAACL ’03.
Anais...Association for Computational Linguistics,
2003. Disponível em: <http://dx.doi.org/10.3115/1073445.1073462>
KÖHN, A. Incremental Natural Language Processing: Challenges,
Strategies, and Evaluation. Proceedings of the 27th
International Conference on Computational Linguistics.
Anais...Santa Fe, New Mexico, USA: Association for
Computational Linguistics, ago. 2018. Disponível em: <https://aclanthology.org/C18-1253>
KOHO, M. et al. WarSampo
Knowledge Graph: Finland in the Second World War as Linked Open
Data. Semantic Web – Interoperability, Usability,
Applicability, v. 12, n. 2, p. 265–278, 2021.
KOIZUMI, Y. et al. Miipher: A Robust Speech Restoration Model
Integrating Self-Supervised Speech and Text Representations.
arXiv preprint arXiv:2303.01664, b2023.
KOIZUMI, Y. et al. LibriTTS-R: A Restored Multi-Speaker
Text-to-Speech Corpus. arXiv preprint arXiv:2305.18802,
a2023.
KOJIMA, T. et al. Large Language Models are Zero-Shot
Reasoners. NeurIPS. Anais...2022. Disponível
em: <http://papers.nips.cc/paper\_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html>
KOLECK, T. A. et al. Natural language processing of symptoms documented
in free-text narratives of electronic health records: a systematic
review. J Am Med Inform Assoc, v. 26, n. 4, p. 364–379,
abr. 2019.
KONRAD, P. G. A
busca vs. o resguardo de informações acerca
dos crimes em interrogatórios policiais: um olhar sob a
perspectiva da fala-em-interação.
mathesis—[s.l.] Universidade do Vale do Rio dos Sinos, 2018.
KONSTANTINOVA, N. Review of relation extraction methods: What is
new out there? Analysis of Images, Social Networks and Texts:
Third International Conference, AIST 2014, Yekaterinburg, Russia, April
10-12, 2014, Revised Selected Papers 3.
Anais...Springer, 2014.
KOPPATZ, M. et al. Automatic generation of factual news headlines in
finnish. arXiv preprint arXiv:2212.02170, 2022.
KORKONTZELOS, I. Unsupervised Learning of Multiword
Expressions. tese de doutorado—York, UK: University of
York, 2011.
KORNILOVA, A.; EIDELMAN, V. BillSum:
A Corpus for Automatic Summarization of US
Legislation. Proceedings of the 2nd Workshop on New
Frontiers in Summarization. Anais...Association for
Computational Linguistics, 2019.
KORSKO, P. The narrative shape of two-party complaints in
Portuguese: A discourse analytic study. tese de
doutorado—[s.l.] Teachers College, Columbia University, 2004.
KOWAL, S.; O’CONNELL, D. C. Transcription as a crucial
step of data analysis. The SAGE handbook of qualitative data
analysis, p. 64–79, 2014.
KRAHMER, E.; DEEMTER, K. VAN. Computational generation of referring
expressions: A survey. Computational Linguistics, v.
38, n. 1, p. 173–218, 2012.
KRAHMER, E.; ERK, S. VAN; VERLEG, A. Graph-Based Generation
of Referring Expressions. Computational
Linguistics, v. 29, n. 1, p. 53–72, 2003.
KRAHMER, E.; THEUNE, M. Efficient context-sensitive generation of
referring expressions. Em: DEEMTER, K. VAN; KIBBLE, R. (Eds.).
Information sharing: Reference and presupposition in language
generation and interpretation. Stanford, CA: CSLI, 2002. p.
223–264.
KRINGS, H. P. Repairing Texts:
Empirical Investigations of Machine Translation Post-editing
Processes. [s.l.] Kent State University Press, 2001.
KRIPPENDORFF, K. Estimating the
Reliability, Systematic Error and Random Error of Interval Data.
Educational and Psychological Measurement, v. 30, n. 1,
p. 61–70, 1970.
KRUSE, J. S.; BARBOSA, P. A. Alinha-PB: a
phonetic aligner for Brazilian Portuguese.
Journal of Communication and Information Systems, v.
36, n. 1, p. 192–199, dez. 2021.
KUDO, T. Subword Regularization: Improving Neural Network
Translation Models with Multiple Subword Candidates.
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Anais...Melbourne, Australia: Association for
Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1007>
KUKICH, K. Design of a Knowledge-based Report
Generator. Proceedings of the 21st Annual Meeting on
Association for Computational Linguistics. Anais...:
ACL’83.Cambridge, Massachusetts: Association for Computational
Linguistics, 1983. Disponível em: <https://doi.org/10.3115/981311.981340>
KULKARNI, M. et al. Towards a Unified Multi-Domain Multilingual
Named Entity Recognition Model. Proceedings of the 17th
Conference of the European Chapter of the Association for Computational
Linguistics. Anais...Dubrovnik, Croatia: Association
for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.161>
KUMAR, D. et al. Understanding the Behaviors of Toxic Accounts
on Reddit. Proceedings of the ACM Web Conference 2023.
Anais...2023.
KUMAWAT, D.; JAIN, V. POS Tagging Approaches: A Comparison.
International Journal of Computer Applications, v. 118,
n. 6, p. 32–38, maio 2015.
KUO, Y. et al. Community-Based Game Design: Experiments on
Social Games for Commonsense Data Collection. Proceedings of
the ACM SIGKDD Workshop on Human Computation. Anais...:
HCOMP ’09.New York, NY, USA: Association for Computing Machinery, 2009.
Disponível em: <https://doi.org/10.1145/1600150.1600154>
KUZI, S.; SHTOK, A.; KURLAND, O. Query expansion using word
embeddings. Proceedings of the 25th ACM international on
conference on information and knowledge management.
Anais...2016.
KYLE, K. K. J. F. S.; JOSE, K. A. C. Y. B.; SOTELO, S. M.
Char2wav: End-to-end speech synthesis. International
Conference on Learning Representations, workshop.
Anais...2017.
LACERDA, A. R. T. DE; AGUIAR, C. S. R. FLOSS FAQ
Chatbot Project Reuse: How to Allow Nonexperts to Develop a
Chatbot. Proceedings of the 15th International Symposium on
Open Collaboration. Anais...: OpenSym ’19.New York, NY,
USA: Association for Computing Machinery, 2019. Disponível em: <https://doi.org/10.1145/3306446.3340823>
LAFFERTY, J. D.; MCCALLUM, A.; PEREIRA, F. C. N. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. Proceedings of the Eighteenth International Conference on
Machine Learning. Anais...: ICML ’01.San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001. Disponível em: <https://dl.acm.org/doi/abs/10.5555/645530.655813>
LAKHOTIA, K. et al. On
Generative Spoken Language Modeling from Raw Audio.
Transactions of the Association for Computational
Linguistics, v. 9, p. 1336–1354, 2021.
LAMPLE, G. et al. Neural Architectures for
Named Entity Recognition. (K. Knight, A. Nenkova, O.
Rambow, Eds.)Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Anais...San
Diego, California: Association for Computational Linguistics, jun. 2016.
LAN, Z. et al. ALBERT: A Lite
BERT for Self-supervised Learning of Language
Representations. 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. Anais...OpenReview.net, 2020. Disponível
em: <https://openreview.net/forum?id=H1eA7AEtvS>
LARSSON, S. User-initiated Sub-dialogues in State-of-the-art
Dialogue Systems. Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue.
Anais...Saarbrücken, Germany: Association
for Computational Linguistics, ago. 2017. Disponível em: <https://aclanthology.org/W17-5503>
LÄUBLI, S. et al. A set of recommendations for assessing human–machine
parity in language translation. Journal of Artificial
Intelligence Research, v. 67, p. 653–672, 2020.
LÄUBLI, S.; SENNRICH, R.; VOLK, M. Has Machine Translation
Achieved Human Parity? A Case for Document-level
Evaluation. Proceedings of EMNLP.
Anais...Brussels, Belgium: 2018.
LAVIE, A.; AGARWAL, A. Meteor: An Automatic Metric
for MT Evaluation with High Levels of Correlation with
Human Judgments. Proceedings of the Second Workshop on
Statistical Machine Translation. Anais...:
StatMT’07.Prague, Czech Republic: 2007. Disponível em: <http://dl.acm.org/citation.cfm?id=1626355.1626389>
LAZER, D. M. J. et al. The science of fake news.
Science, v. 359, n. 6380, p. 1094–1096, 2018.
LAZZARI, R. R.; FINATTO, M. J. B. Exame do vocabulário
médico no Português no século
XVIII: contribuições da lexicometria para o
desenho de um dicionário histórico.
Mandinga-Revista de Estudos Linguı́sticos (ISSN:
2526-3455), v. 7, n. 1, p. 102–123, 2023.
LEACOCK, C. et al. Automated Grammatical Error Detection for
Language Learners. [s.l.] Morgan; Claypool Publishers, 2010.
LEAL, S. E. et al. Avaliação automática da complexidade de
sentenças do português brasileiro para o domínio rural.
Symposium in Information and Human Language Technology - STIL.
Anais...SBC, 2019.
LEAL, S. E. et al. Using Eye-tracking Data to Predict the
Readability of Brazilian Portuguese Sentences
in Single-task, Multi-task and Sequential Transfer Learning
Approaches. Proceedings of the 28th International Conference on
Computational Linguistics. Anais...Barcelona, Spain
(Online): International Committee on Computational Linguistics, dez.
2020. Disponível em: <https://www.aclweb.org/anthology/2020.coling-main.512>
LEAL, S. E. Predição da complexidade sentencial do português
brasileiro escrito, usando métricas linguísticas, psicolinguísticas e de
rastreamento ocular. tese de doutorado—[s.l.] Universidade de
São Paulo, 2021.
LEAL, S. E. et al. RastrOS Project: Natural Language Processing
contributions to the development of an eye-tracking corpus with
predictability norms for Brazilian Portuguese. Language
Resources and Evaluation, p. 1333–1372, 2022.
LEAL, S. E. et al. NILC-Metrix: assessing
the complexity of written and spoken language in Brazilian
Portuguese. Language Resources and Evaluation,
2023.
LEAL, S. E.; DURAN, M. S.; ALUÍSIO, S. M. A Nontrivial Sentence
Corpus for the Task of Sentence Readability Assessment in
Portuguese. Proceedings of the 27th International
Conference on Computational Linguistics.
Anais...Association for Computational Linguistics, ago.
2018.
LEBRET, R.; GRANGIER, D.; AULI, M. Neural Text Generation from
Structured Data with Application to the Biography Domain.
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Anais...: EMNLP’16.Austin, Texas:
Association for Computational Linguistics, 2016. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/D/D16/D16-1128.pdf>
LÉCHELLE, W.; GOTTI, F.; LANGLAIS, P. WiRe57: A Fine-Grained Benchmark
for Open Information Extraction. arXiv preprint
arXiv:1809.08962, 2018.
LEE, C. VAN DER et al. Human evaluation of automatically generated text:
Current trends and best practice guidelines. Computer Speech
& Language, v. 67, p. 101151, 2021.
LEE, C. VAN DER; KRAHMER, E.; WUBBEN, S. PASS: A Dutch
data-to-text system for soccer, targeted towards specific
audiences. Proceedings of INLG-2017.
Anais...Santiago de Compostela, Spain: Association for
Computational Linguistics, a2017. Disponível em: <http://aclweb.org/anthology/W17-3513>
LEE, H. et al. Stanford’s multi-pass sieve coreference
resolution system at the CoNLL-2011 shared task. Proceedings of
the Fifteenth Conference on Computational Natural Language Learning:
Shared Task. Anais...2011.
LEE, H. et al. Deterministic coreference resolution based on
entity-centric, precision-ranked rules. Computational
Linguistics, v. 39, n. 4, p. 885–916, 2013.
LEE, J. et al. BioBERT: a
pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, v. 36, n. 4, p.
1234–1240, set. 2019.
LEE, K. et al. End-to-end neural coreference resolution. arXiv
preprint arXiv:1707.07045, b2017.
LEE, S. et al. A Survey
on Evaluation Metrics for Machine Translation.
Mathematics, v. 11, n. 4, 2023.
LEHNERT, W.; SUNDHEIM, B. A performance evaluation of text-analysis
technologies. AI magazine, v. 12, n. 3, p. 81–81, 1991.
LEIDNER, J. L.; PLACHOURAS, V. Ethical by Design: Ethics Best
Practices for Natural Language Processing. Proceedings of the
First ACL Workshop on Ethics in Natural Language
Processing. Anais...Valencia, Spain: Association for
Computational Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/W17-1604>
LEITÃO, M. M.; RIBEIRO, A. J. C.; MAIA, M. Penalidade do Nome Repetido e
Rastreamento Ocular em Português Brasileiro. Revista
LinguíStica, v. v8 n2, 2012.
LEITE, H. et al. WRITEME: uma Ferramenta de Auxílio
à Escrita de READMEs Baseada em Dados Abertos.
Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias
Abertas. Anais...Porto Alegre, RS, Brasil: SBC, 2020.
LEITNER, E.; REHM, G.; MORENO-SCHNEIDER, J. Fine-Grained Named
Entity Recognition in Legal Documents. (M. Acosta et al.,
Eds.)Semantic Systems. The Power of AI and Knowledge Graphs.
Anais...Cham: Springer International Publishing, 2019.
LENAT, D. B.; GUHA, R. V. Building large knowledge-based
systems: representation and inference in the Cyc project.
[s.l.] Addison-Wesley, 1989.
LESK, M. The seven ages of information retrieval.,
1995. Disponível em: <https://archive.ifla.org/VI/5/op/udtop5/udt-op5.pdf>
LESTER, B.; AL-RFOU, R.; CONSTANT, N. The Power of Scale for
Parameter-Efficient Prompt Tuning. (M.-F. Moens et al.,
Eds.)Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.243>
LEVELT, W. J. Speaking: From
intention to articulation. [s.l.] MIT press, 1993.
LEVINSON, S. C. Speech
Acts. Em: The Oxford Handbook of Pragmatics. [s.l.]
Oxford University Press, 2017.
LEWIS, D. Scorekeeping in a
language game. Em: Semantics from different points of
view. [s.l.] Springer, 1979. p. 172–187.
LEWIS, M. et al. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. (D. Jurafsky et al.,
Eds.)Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Anais...Association for Computational
Linguistics, a2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.703>
LEWIS, P. S. H. et al. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. (H. Larochelle et
al., Eds.)Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Anais...b2020. Disponível
em: <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>
LGPD. Lei Geral de Proteção de Dados Pessoais (LGPD).
Disponível em: <https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm>.
Acesso em: 9 abr. 2023.
LI, J. et al. Molweni: A challenge multiparty dialogues-based machine
reading comprehension dataset with discourse structure. arXiv
preprint arXiv:2004.05080, 2020.
LI, P. et al. Making AI Less "Thirsty": Uncovering and Addressing the
Secret Water Footprint of AI Models. arXiv preprint
arXiv:2304.03271, a2023.
LI, Q.; JI, H. Incremental joint extraction of entity mentions
and relations. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...2014.
LI, R. et al. StarCoder: may the
source be with you! CoRR, v. abs/2305.06161, b2023.
LI, S. et al. Defining a New NLP
Playground. (H. Bouamor, J. Pino, K. Bali, Eds.)Findings of the
Association for Computational Linguistics: EMNLP 2023.
Anais...Singapore: Association for Computational
Linguistics, dez. c2023. Disponível em: <https://aclanthology.org/2023.findings-emnlp.799>
LI, W. W. et al. BERT Is Not The Count: Learning to
Match Mathematical Statements with Proofs. (A. Vlachos, I.
Augenstein, Eds.)Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics,
EACL 2023, Dubrovnik, Croatia, May 2-6, 2023.
Anais...Association for Computational Linguistics,
d2023. Disponível em: <https://aclanthology.org/2023.eacl-main.260>
LI, X. L.; LIANG, P. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. (C. Zong et al., Eds.)Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021. Anais...Association
for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.353>
LI, X.; ROTH, D. Learning question classifiers. COLING
2002: The 19th International Conference on Computational Linguistics.
Anais...2002.
LI, Y. et al. MAGE:
Machine-generated Text Detection in the Wild. (L.-W. Ku, A.
Martins, V. Srikumar, Eds.)Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...Bangkok, Thailand: Association for
Computational Linguistics, ago. 2024.
LIANG, X. et al. Contrastive Demonstration Tuning for
Pre-trained Language Models. (Y. Goldberg, Z. Kozareva, Y.
Zhang, Eds.)Findings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11,
2022. Anais...Association for Computational
Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.56>
LIESENFELD, A.; LOPEZ, A.; DINGEMANSE, M. The timing bottleneck:
Why timing and overlap are mission-critical for conversational user
interfaces, speech recognition and dialogue systems.
Proceedings of the 24th Meeting of the Special Interest Group on
Discourse and Dialogue. Anais...Prague, Czechia:
Association for Computational Linguistics, set. 2023. Disponível em:
<https://aclanthology.org/2023.sigdial-1.45>
LIKERT, R. A Technique for the
Measurement of Attitudes. [s.l.] Archives of Psychology,
1932.
LIMA, A. DA S.; BORGES, V. R. Training and
evaluating Named Entity Recognition Models using a Legal Corpus of
publications from Government Gazettes. 2022.
LIMA, J. P.; COSTA, J. A.; ARAÚJO, D. C. Comparison of Feature
Extraction Methods for Brazilian Legal Documents Clustering.
2021 IEEE Latin American Conference on Computational Intelligence
(LA-CCI). Anais...IEEE, 2021. Disponível em: <https://doi.org/10.1109/LA-CCI48322.2021.9769839>
LIMA, T. B. DE et al. Avaliação Automática de
Redação: Uma revisáo
sistemática. Revista Brasileira de
Informática na Educação,
v. 31, p. 205--221, maio 2023.
LIN, C. et al. SenseMood: Depression Detection on Social
Media. Em: 2020 International Conference on Multimedia
Retrieval. New York, USA: Association for
Computing Machinery, 2020a. p. 407–411.
LIN, C.-H. et al. Rich prosodic
information exploration on spontaneous Mandarin
speech. 2016 10th International Symposium on Chinese Spoken
Language Processing (ISCSLP). Anais...Tianjin: 2016.
LIN, C.-H. et al. Hierarchical prosody modeling for
Mandarin spontaneous speech. The Journal of the
Acoustical Society of America, v. 145, n. 4, p. 2576–2596,
2019.
LIN, C.-Y. ROUGE: A Package for Automatic
Evaluation of Summaries. Text Summarization Branches Out.
Anais...Barcelona, Spain: Association for Computational
Linguistics, jul. 2004. Disponível em: <https://aclanthology.org/W04-1013>
LIN, D. Automatic Identification of Non-compositional
Phrases. Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics.
Anais...College Park, Maryland, USA: Association for
Computational Linguistics, jun. 1999. Disponível em: <https://aclanthology.org/P99-1041>
LIN, J.; NOGUEIRA, R.; YATES, A. Pretrained Transformers for Text
Ranking: BERT and Beyond. arXiv preprint
arXiv:2010.06467, b2020.
LINARDATOS, P.; PAPASTEFANOPOULOS, V.; KOTSIANTIS, S. Explainable AI: A Review of
Machine Learning Interpretability Methods. Entropy,
v. 23, n. 1, 2021.
LIPTON, Z. C.; STEINHARDT, J. Troubling Trends in
Machine Learning Scholarship: Some ML papers suffer from flaws that
could mislead the public and stymie future research.
Queue, v. 17, n. 1, p. 45–77, 2019.
LITMAN, D. J.; ALLEN, J. F. A plan recognition
model for subdialogues in conversations. Cognitive
science, v. 11, n. 2, p. 163–200, 1987.
LIU, B. Sentiment Analysis and Opinion Mining. Synthesis
Lectures on Human Language Technologies, 2012.
LIU, C.-W. et al. How NOT To Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Metrics for
Dialogue Response Generation. Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Anais...Austin, Texas: Association for Computational
Linguistics, nov. a2016. Disponível em: <https://aclanthology.org/D16-1230>
LIU, H.; SINGH, P. Commonsense Reasoning in and Over Natural
Language. (M. Gh. Negoita, R. J. Howlett, L. C. Jain,
Eds.)Knowledge-Based Intelligent Information and Engineering Systems.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.
LIU, N. F. et al. Lexical Semantic Recognition.
Proceedings of the 17th Workshop on Multiword Expressions (MWE 2021).
Anais...Online: Association for Computational
Linguistics, a2021. Disponível em: <https://aclanthology.org/2021.mwe-1.6>
LIU, T.; YAO, J.-G.; LIN, C.-Y. Towards improving neural named
entity recognition with gazetteers. Proceedings of the 57th
annual meeting of the association for computational linguistics.
Anais...a2019.
LIU, Y. et al. RoBERTa: A Robustly Optimized BERT Pretraining
Approach., b2019. Disponível em: <https://arxiv.org/abs/1907.11692>
LIU, Y. et al. Multilingual Denoising
Pre-training for Neural Machine Translation. Trans. Assoc.
Comput. Linguistics, v. 8, p. 726–742, 2020.
LIU, Y.; HEARNE, J.; CONRAD, B. Recognizing proper names in ur
iii texts through supervised learning. The Twenty-Ninth
International Flairs Conference. Anais...b2016.
LIU, Y.; LAPATA, M. Text summarization with pretrained encoders.
arXiv preprint arXiv:1908.08345, 2019.
LIU, Z. et al. De-identification of clinical notes via recurrent neural
network and conditional random field. J Biomed Inform,
v. 75S, p. S34–S42, jun. 2017.
LIU, Z. et al. A Robustly Optimized BERT Pre-Training Approach
with Post-Training. Chinese Computational Linguistics: 20th
China National Conference, CCL 2021, Hohhot, China, August 13–15, 2021,
Proceedings. Anais...Berlin, Heidelberg:
Springer-Verlag, b2021. Disponível em: <https://doi.org/10.1007/978-3-030-84186-7_31>
LIVESO. O que é BERT? - O mais recente algoritmo da
Google. Disponível em: <https://liveseo.com.br/seo/o-que-e-bert-o-mais-recente-algoritmo-da-google/#:~:text=Bem%2C%20o%20BERT%2C%20de%20maneira,respostas%20possíveis%20para%20seus%20usuários>.
LO, C. YiSi - a Unified Semantic MT Quality
Evaluation and Estimation Metric for Languages with Different Levels of
Available Resources. Proceedings of the Fourth Conference on
Machine Translation, WMT 2019, Florence, Italy, August 1-2,
2019 - Volume 2: Shared Task Papers, Day 1.
Anais...2019. Disponível em: <https://doi.org/10.18653/v1/w19-5358>
LO, C.; WU, D. MEANT: An inexpensive,
high-accuracy, semi-automatic metric for evaluating translation utility
based on semantic roles. The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies,
Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon,
USA. Anais...2011. Disponível em: <https://aclanthology.org/P11-1023/>
LO, S. L. et al. Multilingual Sentiment Analysis: From Formal to
Informal and Scarce Resource Languages. Artificial Intelligence
Review, 2017.
LODER, L. L.; GONZALEZ, P. C.; GARCEZ, P. M. Reparo em terceira
posição e intersubjetividade na
fala-em-interação em português
brasileiro. Veredas-Revista de Estudos
Linguı́sticos, v. 6, n. 2, 2002.
LOMMEL, A.; MELBY, A. Tutorial:
MQM-DQF: A Good Marriage (Translation Quality
for the 21st Century). Proceedings of the 13th Conference of
the Association for Machine Translation in the Americas
(Volume 2: User Track). Anais...Boston, MA: Association
for Machine Translation in the Americas, mar. 2018. Disponível em:
<https://aclanthology.org/W18-1925>
LOPE, J.; GRAÑA, M. An ongoing review of speech emotion recognition.
Neurocomputing, 2023.
LOPES, C. DE S. et al. Trend in the prevalence
of depressive symptoms in Brazil: results from the Brazilian National
Health Survey 2013 and 2019. Cad Saude Publica, 6
maio a2022.
LOPES, F.; TEIXEIRA, C.; GONÇALO OLIVEIRA, H. Contributions to
Clinical Named Entity Recognition in Portuguese.
Proceedings of the 18th BioNLP Workshop and Shared Task.
Anais...Florence, Italy: Association for Computational
Linguistics, ago. 2019. Disponível em: <https://www.aclweb.org/anthology/W19-5024>
LOPES, L. et al. PortiLexicon-UD: a Portuguese Lexical Resource
according to Universal Dependencies Model. Proceedings of the
Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, jun. b2022. Disponível em: <https://aclanthology.org/2022.lrec-1.715>
LOPES, L. et al. Disambiguation of Universal Dependencies
Part-of-Speech Tags of Closed Class Words in Portuguese. (A.
Britto, K. V. Delgado, Eds.)Proceedings of the 12th Brazilian Conference
on Intelligent Systems (BRACIS). Anais...2023.
LOPES, L.; PARDO, T. Towards Portparser - a highly accurate
parsing system for Brazilian Portuguese
following the Universal Dependencies
framework. (P. Gamallo et al., Eds.)Proceedings of the 16th
International Conference on Computational Processing of Portuguese -
Vol. 1. Anais...Santiago de Compostela, Galicia/Spain:
Association for Computational Lingustics, mar. 2024. Disponível em:
<https://aclanthology.org/2024.propor-1.41>
LÓPEZ, R. et al. A qualitative analysis of a corpus of opinion
summaries based on aspects. Proceedings of the 9th Linguistic
Annotation Workshop. Anais...2015.
LOPEZ-GAZPIO, I. et al. Interpretable semantic textual similarity:
Finding and explaining differences between sentences.
Knowledge-Based Systems, v. 119, p. 186–199, 2017.
LORÈ, F. et al. An
AI framework to support decisions on GDPR compliance.
Journal of Intelligent Information Systems, p. 1–28,
2023.
LOSADA, D. E.; CRESTANI, F. A Test Collection for Research on
Depression and Language Use. Experimental IR Meets
Multilinguality, Multimodality, and Interaction.
Anais...Cham: Springer, 2016.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. eRISK 2017: CLEF
lab on early risk prediction on the internet: experimental
foundations. Lecture Notes in Computer Science vol
10456. Anais...Cham: Springer, 2017.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. Overview of
eRisk: Early Risk Prediction on the Internet. Lecture
Notes in Computer Science vol 11018. Anais...Cham:
Springer, 2018.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. Overview of eRisk
2019 Early Risk Prediction on the Internet. Lecture
Notes in Computer Science vol 11696. Anais...2019.
LOSNEGAARD, G. S. et al. PARSEME Survey on MWE
Resources. (N. C. (Conference Chair) et al., Eds.)Proceedings
of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016). Anais...Paris, France: European
Language Resources Association (ELRA), 2016.
LOUIS, A.; HIGGINS, D. Off-topic essay detection using short
prompt texts. Proceedings of the NAACL
HLT 2010 Fifth Workshop on Innovative Use of
NLP for Building Educational Applications.
Anais...Los Angeles, California: Association for
Computational Linguistics, jun. 2010.
LOUIS, A.; NENKOVA, A. Automatically assessing machine summary content
without a gold standard. Computational Linguistics, v.
39, n. 2, p. 267–300, 2013.
LOVEYS, K. et al. Small but Mighty: Affective
Micropatterns for Quantifying Mental Health from Social Media
Language. Fourth Workshop on Computational Linguistics and
Clinical Psychology: From Linguistic Signal to Clinical Reality.
Anais...Vancouver, Canada: Association for
Computational Linguistics, 2017.
LOVINS, J. B. Development of a stemming algorithm. Mech. Transl.
Comput. Linguistics, v. 11, n. 1-2, p. 22–31, 1968.
LUCAS, J. et al. Fighting Fire with Fire: The Dual Role of
LLMs in Crafting and Detecting Elusive
Disinformation. (H. Bouamor, J. Pino, K. Bali, Eds.)Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing. Anais...Singapore: Association for
Computational Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.883>
LUCY, L.; BAMMAN, D. Gender and Representation Bias in
GPT-3 Generated Stories. Proceedings of the Third
Workshop on Narrative Understanding. Anais...Virtual:
Association for Computational Linguistics, jun. 2021. Disponível em:
<https://aclanthology.org/2021.nuse-1.5>
LUDUSAN, B.; SYNNAEVE, G.; DUPOUX, E. Prosodic boundary
information helps unsupervised word segmentation. Proceedings
of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Anais...2015.
LUHN, H. P. The automatic creation of literature abstracts. IBM
Journal of research and development, v. 2, n. 2, p. 159–165,
1958.
LUO, X. On Coreference Resolution Performance Metrics.
Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Anais...Vancouver, Canada: 2005.
LUONG, T.; PHAM, H.; MANNING, C. D. Effective Approaches to
Attention-based Neural Machine Translation. (L. Màrquez et al.,
Eds.)Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015. Anais...The Association for
Computational Linguistics, 2015. Disponível em: <https://doi.org/10.18653/v1/d15-1166>
LYONS, J. Semantics: Volume 2. [s.l.] Cambridge
university press, 1977. v. 2
MA, Q. et al. Blend: a Novel Combined MT Metric
Based on Direct Assessment - CASICT-DCU submission to
WMT17 Metrics Task. Proceedings of the Second
Conference on Machine Translation, WMT 2017, Copenhagen,
Denmark, September 7-8, 2017. Anais...2017. Disponível
em: <https://doi.org/10.18653/v1/w17-4768>
MACDONALD, C.; TONELLOTTO, N. Declarative Experimentation in
Information Retrieval using PyTerrier. Proceedings of ICTIR
2020. Anais...2020.
MACHADO, A. A. A. et al. Personalitatem Lexicon: um léxico em
português brasileiro para mineração de traços de personalidade em
textos. Proceedings of the Brazilian Symposium on Computers in
Education. Anais...2015.
MACHADO, M. T.; PARDO, T. A. S. NILC at
ABSAPT 2022: Aspect Extraction for Portuguese.
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022)
co-located with the Conference of the Spanish Society for Natural
Language Processing (SEPLN 2022), A
Coruña, Spain, September 20, 2022.
Anais...2022.
MACHADO, M. T.; PARDO, T. A. S.; RUIZ, E. E. S. Creating a
portuguese context sensitive lexicon for sentiment analysis.
Proceedings of the 13th international conference on computational
processing of the Portuguese Language (PROPOR).
Anais...2018.
MACIEL, A. M. B. Para
o reconhecimento da especificidade do termo jurídico.
mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2001.
MACOHIN, A.; CARNEIRO, J. V. V. Web Crawling e Web Scraping em sites de
tribunais: publicidade processual e proteção de dados pessoais nas
experiências europeia e brasileira. Em: WACHOWICZ, M. (Ed.).
Proteção de Dados Pessoais em Perspectiva: LGPD e RGPD na Ótica
do Direito Comparado. Curitiba: Gedai, UFPR, 2020.
MADUREIRA, B. Flamingos and Hedgehogs in the Croquet-Ground:
Teaching Evaluation of NLP Systems for Undergraduate
Students. Proceedings of the Fifth Workshop on Teaching NLP.
Anais...Online: Association for Computational
Linguistics, jun. 2021. Disponível em: <https://aclanthology.org/2021.teachingnlp-1.14>
MADUREIRA, B.; ÇELIKKOL, P.; SCHLANGEN, D. Revising with a
Backward Glance: Regressions and Skips during Reading as Cognitive
Signals for Revision Policies in Incremental Processing. (J.
Jiang, D. Reitter, S. Deng, Eds.)Proceedings of the 27th Conference on
Computational Natural Language Learning (CoNLL).
Anais...Singapore: Association for Computational
Linguistics, dez. a2023. Disponível em: <https://aclanthology.org/2023.conll-1.22>
MADUREIRA, B.; KAHARDIPRAJA, P.; SCHLANGEN, D. The Road to
Quality is Paved with Good Revisions: A Detailed Evaluation Methodology
for Revision Policies in Incremental Sequence Labelling.
Proceedings of the 24th Meeting of the Special Interest Group on
Discourse and Dialogue. Anais...Prague, Czechia:
Association for Computational Linguistics, set. b2023. Disponível em:
<https://aclanthology.org/2023.sigdial-1.14>
MADUREIRA, B.; LASOTA, L. Das Inquietudes em Tecnologias de Linguagem.
Em: Novas Tecnologias. [s.l.] Editora Casa do Direito,
2023.
MADUREIRA, B.; SCHLANGEN, D. Incremental Processing in the Age
of Non-Incremental Encoders: An Empirical Assessment of Bidirectional
Models for Incremental NLU. Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.26>
MAGNINI, B. et al. Overview of the CLEF 2006
Multilingual Question Answering
Track. Em: PETERS, C. et al. (Eds.).
Evaluation of Multilingual and
Multi-modal Information Retrieval
- 7th Workshop of the
Cross-Language Evaluation
Forum, CLEF 2006. Alicante,
Spain, September, 2006. Revised
Selected papers. Lecture Notes em Computer
Science. Berlin / Heidelberg: Springer, 2007. v. 4730p. 223–256.
MAHAJAN, K.; SHAIKH, S. On the Need for Thoughtful Data
Collection for Multi-Party Dialogue: A Survey of Available Corpora and
Collection Methods. Proceedings of the 22nd Annual Meeting of
the Special Interest Group on Discourse and Dialogue.
Anais...Singapore; Online: Association for
Computational Linguistics, jul. 2021. Disponível em: <https://aclanthology.org/2021.sigdial-1.36>
MAIA, D. F. et al. UlyssesSD-Br: Stance Detection
in Brazilian Political Polls. (G. Marreiros et al.,
Eds.)Progress in Artificial Intelligence. Anais...Cham:
Springer International Publishing, 2022. Disponível em: <https://github.com/Dyonnatan/UlyssesSD-Br>
MAIA, M.; LEMLE, M.; FRANÇA, A. I. Efeito stroop e rastreamento ocular
no processamento de palavras. Ciências e Cognição 2007,
v. 12, p. 02–17, 2007.
MALENCHINI, F. M. et al. Um Benchmark para Sistemas de Extração
de Informação Aberta em Português. Proceedings of theSymposium
in Information and Human Language Technology (STIL 2019).
Anais...Salvador, Bahia: SBC, out. 2019.
MALIK, V. et al. ILDC
for CJPE: Indian Legal Documents Corpus for
Court Judgment Prediction and Explanation. Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Anais...Association
for Computational Linguistics, 2021.
MALINGAN, N. Attention Mechanism in Deep Learning.,
2024. Disponível em: <https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/>
MALOUF, R. A Comparison of Algorithms for Maximum Entropy
Parameter Estimation. COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002). Anais...2002.
Disponível em: <https://aclanthology.org/W02-2018>
MANDAL, A. et al. Unsupervised
approaches for measuring textual similarity between legal court case
reports. Artificial Intelligence and Law, v. 29, n.
3, p. 417–451, 2021.
MANI, I. Automatic Summarization. John Benjamins Publishing
Company, v. 2, p. 399–408, 2001.
MANI, I.; MAYBURY, M. T. Advances in automatic text
summarization. [s.l.] MIT press, 1999.
MANN, P.; MATSUSHIMA, E. H.; PAES, A. Detecting
Depression from Social Media Data as a Multiple-Instance Learning
Task. 10th International Conference on Affective Computing
and Intelligent Interaction (ACII). Anais...2022.
MANN, P.; PAES, A.; MATSUSHIMA, E. H. See and Read: Detecting
Depression Symptoms in Higher Education Students Using Multimodal Social
Media Data. Proceedings of the International AAAI Conference on
Web and Social Media. Anais...2020.
MANN, W. C.; THOMPSON, S. A. Rhetorical structure theory: Toward a
functional theory of text organization. Text-interdisciplinary
Journal for the Study of Discourse, v. 8, n. 3, p. 243–281,
a1988.
MANN, W.; THOMPSON, S. Rethorical Structure
Theory: Toward a functional theory of text organization.
Text, v. 8, p. 243–281, jan. b1988.
MANNING, C. D.; SCHÜTZE, H. Foundations of statistical natural
language processing. Cambridge, USA: mitpress, 1999.
MANNING, C. D.; SCHÜTZE, H.; RAGHAVAN, P. Introduction to
information retrieval. [s.l.] Cambridge University Press
Cambridge, 2008.
MARCACINI, R. M.; CANDIDO JUNIOR, A.; CASANOVA, E. Overview of
the Automatic Speech Recognition for Spontaneous and Prepared Speech
& Speech Emotion Recognition in Portuguese (SE&R) Shared-tasks
at PROPOR 2022. Proceedings of the Workshop on Automatic Speech
Recognition for Spontaneous and Prepared Speech & Speech Emotion
Recognition in Portuguese co-located with 15th edition of the
International Conference on the Computational Processing of Portuguese
(PROPOR 2022). Anais...2022.
MARCU, D. From local to global coherence: A bottom-up approach
to text planning. AAAI/IAAI. Anais...Citeseer,
1997.
MARCU, D.; CARLSON, L.; WATANABE, M. The automatic translation
of discourse structures. 1st Meeting of the North American
Chapter of the Association for Computational Linguistics.
Anais...2000.
MARCUSCHI, L. A. Atos de
referenciação na
interação face a face. Cadernos de
Estudos Linguı́sticos, v. 41, p. 37–54, 2001.
MARCUSCHI, L. A. Produção textual,
análise de gêneros e
compreensão. [s.l.] Parábola Ed.,
2008.
MAREGA, L. M. P.; JUNG, N. M. A
sobreposição de falas na conversa cotidiana:
disputa pela palavra? Revista Veredas, v. 15, n. 1,
2011.
MARGARIDO, P. R. A. et al. Automatic Summarization for Text
Simplification: Evaluating Text Understanding by Poor Readers.
Companion Proceedings of the XIV Brazilian Symposium on Multimedia and
the Web. Anais...: WebMedia ’08.New York, NY, USA: ACM,
2008. Disponível em: <http://doi.acm.org/10.1145/1809980.1810057>
MARIE, B.; FUJITA, A.; RUBINO, R. Scientific
Credibility of Machine
Translation Research: A
Meta-Evaluation of 769
Papers. arXiv:2106.15195 [cs], jun.
2021.
MARINHO, J. et al. Automated Essay Scoring: An approach based on
ENEM competencies. Anais do XIX Encontro Nacional de
Inteligência Artificial e Computacional. Anais...SBC,
a2022.
MARINHO, J.; ANCHIÊTA, R.; MOURA, R. Essay-BR: a Brazilian Corpus to
Automatic Essay Scoring Task. Journal of Information and Data
Management, v. 13, n. 1, p. 65–76, b2022.
MARKANTONATOU, S. et al. IDION: A database for
Modern Greek multiword expressions.
Proceedings of the Joint Workshop on Multiword Expressions and WordNet
(MWE-WN 2019). Anais...Florence, Italy: Association for
Computational Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5115>
MARKANTONATOU, S. et al. PMWE conventions for examples
containing multiword expressions., 2021. Disponível em: <https://gitlab.com/parseme/pmwe/-/raw/master/Conventions-for-MWE-examples/PMWE_series_conventions_for_multilingual_examples.pdf>
MARKOV, A. A. The theory of algorithms. Trudy Matematicheskogo
Instituta Imeni VA Steklova, v. 42, p. 3–375, 1954.
MARNEFFE, M.-C. DE et al. Universal
Dependencies. Computational
Linguistics, v. 47, n. 2, p. 255–308, jun. 2021.
MARSLEN-WILSON, W. Linguistic
structure and speech shadowing at very short latencies.
Nature, v. 244, n. 5417, p. 522–523, 1973.
MARTINS, D. B. DE J. Pós-edição automática de textos traduzidos
automaticamente de inglês para português do Brasil.
Mestrado—São Carlos: Universidade Federal de São Carlos, 2014.
MARTINS, D. B. DE J.; CASELI, H. DE M. Automatic machine
translation error identification. Machine
Translation, v. 29, n. 1, p. 1–24, 2015.
MARTINS, E. J. Enunciação
e diálogo. tese de doutorado—[s.l.] Universidade Estadual
de Campinas, Instituto de Estudos da Linguagem, Campinas, SP, 1987.
MARTINS, H. Sobre
a estabilidade do significado em Wittgenstein.
Veredas, v. 4, n. 2, p. 19–42, 2000.
MARTINS, H. Três Caminhos na Filosofia da Linguagem. Em:
Introdução à Linguística. Volume III. [s.l.] Editora
Cortez, 2004.
MARTINS, R. T. et al. An interlingua aiming at communication on
the Web: How language-independent can it be?
NAACL-ANLP 2000 Workshop: Applied
Interlinguas: Practical Applications of Interlingual Approaches to
NLP. Anais...2000. Disponível em: <https://aclanthology.org/W00-0204>
MARTINS, R.; NUNES, M. DAS G. V.; HASEGAWA, R. Curupira: A
Functional Parser for Brazilian Portuguese. (N. J. Mamede et
al., Eds.)Computational Processing of the Portuguese Language.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2003.
MARTINS, T. B. F. et al. Readability Formulas Applied to
Textbooks in Brazilian Portuguese. [s.l.] ICMSC-USP, 1996.
MARTSCHAT, S.; STRUBE, M. Latent Structures for Coreference Resolution.
Transactions of the Association for Computational
Linguistics, v. 3, p. 405–418, 2015.
MATOS, V. B. et al. Coordination within Conversational Agents
with Multiple Sources. Anais do XX Encontro Nacional de
Inteligência Artificial e Computacional.
Anais...SBC, 2023. Disponível em: <https://doi.org/10.5753/eniac.2023.234533>
MATTEI, L. D. et al. ATE ABSITA@ EVALITA2020: Overview of the Aspect
Term Extraction and Aspect-based Sentiment Analysis Task.
Proceedings of the 7th Evaluation Campaign of Natural Language
Processing and Speech tools for Italian (EVALITA 2020), 2020.
MATTHEWS, B. W. Comparison of the
predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein
Structure, v. 405, n. 2, p. 442–451, 1975.
MATTHIESSEN, M. C. M. I. Applying systemic
functional linguistics in healthcare contexts. Text and
Talk, v. 33, n. 4-5, p. 437–447, 19 ago. 2013.
MATTHIESSEN, M. C. M. I.; TERUYA, K.; WU, C. Multilingual studies as a
multi-dimensional space of interconnected language studies. Em:
Meaning in context : strategies for implementing intelligent
applications of language studies. [s.l.] Continuum, 2008. p.
146–221.
MATTOS, L. DE et al. Contribuições
para o desenvolvimento de Agentes Pedagógicos
Conversacionais e sua integração a Ambientes
Virtuais de Aprendizagem. Anais do XXXIII Simpósio
Brasileiro de Informática na
Educação. Anais...SBC, 2022.
Disponível em: <https://doi.org/10.5753/sbie.2022.225088
>
MAX, A. Writing
for Language-Impaired Readers. In: Gelbukh A. (eds)
Computational Linguistics and Intelligent Text Processing. CICLing 2006.
Lecture Notes in Computer Science, vol 3878.
Anais...Springer, Berlin, Heidelberg, 2006.
MAXWELL, K. T.; SCHAFER, B. Concept and context
in legal information retrieval. Em: Legal Knowledge and
Information Systems. [s.l.] IOS Press, 2008. p. 63–72.
MAYER, R. E. Elaboration techniques that increase the meaningfulness of
technical text: An experimental test of the learning strategy
hypothesis. Journal of Educational Psychology, v. 72,
n. 6, p. 770–784, 1980.
MAYFIELD, E.; BLACK, A. W. Should You Fine-Tune
BERT for Automated Essay Scoring? Proceedings of
the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications. Anais...Association
for Computational Linguistics, jul. 2020.
MAZIERO, E. G. et al. A base de dados lexical e a interface web
do TeP 2.0: thesaurus eletrônico para o
Português do Brasil. Proceedings of the XIV
Brazilian Symposium on Multimedia and the Web.
Anais...Salvador, Brazil: a2008.
MAZIERO, E. G. Análise retórica com base em grande
quantidade de dados. tese de doutorado—[s.l.] Universidade de
São Paulo, 2016.
MAZIERO, E. G.; HIRST, G.; PARDO, T. A. S. Adaptation of
discourse parsing models for the Portuguese language. 2015
Brazilian Conference on Intelligent Systems (BRACIS).
Anais...IEEE, 2015.
MAZIERO, E. G.; JORGE, M. L. DEL R. C.; PARDO, T. A. S. Identifying
Multidocument Relations. NLPCS, v. 7, p. 60–69, 2010.
MAZIERO, E. G.; PARDO, T. A. S. Automatic Identification of
Multi-document Relations. Proceedings of the PROPOR 2012 PhD and
MSc/MA Dissertation Contest, p. 1–8, 2012.
MAZIERO, E. G.; PARDO, T. A. S.; ALUÍSIO, S. M. Ferramenta de Análise
Automática de Inteligibilidade de Córpus (AIC). NILC -
ICMC-USP, b2008.
MAZUMDER, M. et al. Multilingual spoken words corpus.
Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2). Anais...2021.
MCCALLUM, A.; LI, W. Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced
lexicons. Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Anais...2003.
MCCANN, B. et al. Learned in Translation: Contextualized Word
Vectors. Proceedings of the 31st International Conference on
Neural Information Processing Systems. Anais...:
NIPS’17.Red Hook, NY, USA: Curran Associates Inc., 2017.
MCCRAE, J. P. et al. English
WordNet 2019 – An Open-Source
WordNet for English.
Proceedings of the 10th Global Wordnet Conference.
Anais...Wroclaw, Poland: Global Wordnet Association,
jul. 2019. Disponível em: <https://aclanthology.org/2019.gwc-1.31>
MCDONALD, R. et al. Universal
Dependency Annotation for Multilingual Parsing.
Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).
Anais...Sofia, Bulgaria: Association for Computational
Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-2017>
MCGUIRE, J. et al. The reputational and
ethical consequences of deceptive chatbot use. Scientific
Reports, v. 13, n. 1, 2023.
MCNAMARA, D. S. et al. Coh-Metrix Common Core T.E.R.A. version
1.0., 2013. Disponível em: <http://www.commoncoretera.com/>
MCNAMARA, D. S. et al. Automated Evaluation of Text and
Discourse with Coh-Metrix. 1a. ed. [s.l.] Cambridge University
Press, 2014.
MEI, H.; BANSAL, M.; WALTER, M. R. What to talk about and how?
Selective Generation using LSTMs with Coarse-to-Fine
Alignment. Proceedings of NAACL-2016.
Anais...: HLT-NAACL’16.San Diego, California:
Association for Computational Linguistics, 2016. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/N/N16/N16-1086.pdf>
MEL’ČUK, I. General Phraseology: Theory and Practice.
Amsterdam/Philadelphia: John Benjamins, 2023. v. 36
MEL’ČUK, I.; CLAS, A.; POLGUÈRE, A. Introduction à
la lexicologie explicative et combinatoire. Louvain la Neuve,
Belgium: Editions Duculot, 1995.
MEL’ČUK, I.; POLGUÈRE, A. A Formal Lexicon In The Meaning-Text Theory Or
(How To Do Lexica With Words). cl, v. 13, n. 3-4, p.
261–275, 1987.
MELLO, H.; RASO, T.; ALMEIDA FERRARI, L. DE. C-ORAL–Brasil
II: Corpus de referência do português brasileiro falado
informal., no prelono prelo.
MELO, G. DE; WEIKUM, G. Towards a universal wordnet by learning
from combined evidence. Proceedings of the 18th ACM conference
on Information and knowledge management. Anais...2009.
MENDES, A. R.; CASELI, H. M. Identifying Fine-grained Depression
Signs in Social Media Posts. Proceedings of the 2024 joint
international conference on computational linguistics, language
resources and evaluation (LREC 2024). Anais...2024.
MENDES, R. B.; OUSHIRO, L. Mapping Paulistano Portuguese: the
SP2010 Project. Proceedings of the VIIth GSCP International
Conference: Speech and Corpora. Anais...Firenze, Italy:
Fizenze University Press, 2012.
MEYER, C. F. et al. The world wide web as linguistic corpus. Em:
Corpus Analysis. [s.l.] Brill Rodopi, 2003. p. 241–254.
MIIKKULAINEN, R.; DYER, M. G. Natural Language
Processing With Modular Pdp Networks and Distributed Lexicon.
Cognitive Science, v. 15, n. 3, p. 343–399, 1991.
MIKOLOV, T. et al. Efficient Estimation of Word Representations
in Vector Space., a2013. Disponível em: <https://arxiv.org/abs/1301.3781>
MIKOLOV, T. et al. Distributed Representations of Words and
Phrases and their Compositionality. (C. J. Burges et al.,
Eds.)Advances in Neural Information Processing Systems.
Anais...Curran Associates, Inc., b2013. Disponível em:
<https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf>
MILLER, G. A. WordNet: A Lexical Database for English.
Communications of the ACM, v. Vol. 38, No. 11, p.
39–41, 1995.
MINSKY, M. A framework for representing knowledge. The
psychology of computer vision, 1975.
MITCHELL, M. et al. Model cards for model reporting.
Proceedings of the conference on fairness, accountability, and
transparency. Anais...2019.
MITKOV, R. The Oxford handbook of Computational
Linguistics. [s.l.] Oxford University Press, 2003.
MITKOV, R. 21 Discourse Processing. The handbook of
computational linguistics and natural language processing, p.
599, 2010.
MIWA, M.; BANSAL, M. End-to-End Relation Extraction using LSTMs
on Sequences and Tree Structures. Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Anais...Association for Computational
Linguistics, 2016.
MOHAN, S. et al. The Impact of Toxic Language on the Health of
Reddit Communities. Proceedings of the Canadian Conference on
AI. Anais...2017.
MOL, L. et al. The
communicative import of gestures: Evidence from a comparative analysis
of human–human and human–machine interactions.
Gesture, v. 9, n. 1, p. 97–126, 2009.
MOLLAS, I. et al. ETHOS: a multi-label hate speech
detection dataset. Complex & Intelligent Systems,
2022.
MONTEIRO, R. A. et al. Contributions to the Study of Fake News
in Portuguese: New Corpus and Automatic Detection Results.
Proceedings of the 13th international conference on computational
processing of the Portuguese Language. Anais...Canela,
Rio Grande do Sul, Brazil: Springer International Publishing, set. 2018.
MONTI, J. et al. (EDS.). Proceedings of The 3rd Workshop on
Multi-word Units in Machine Translation and Translation Technology
(MUMTTT 2017). Geneva, Switzerland: Editions Tradulex, 2017.
MONTORO, A. F. Curso de Teoria Geral do Direito - Aula 2: A
linguagem do direito: semântica, sintática e pragmática.
Disponível em: <http://www.dialdata.com.br/ilam/aula2>.
MOORE, R. K. Spoken language
processing: Piecing together the puzzle. Speech
Communication, v. 49, n. 5, p. 418–435, 2007.
MOORKENS, J. et al. Correlations of perceived
post-editing effort with measurements of actual effort.
Machine Translation, v. 29, n. 3/4, p. 267–284, 2015.
MOORKENS, J. Under pressure:
translation in times of austerity. Perspectives, v.
25, n. 3, p. 464–477, fev. 2017.
MORAES GARCEZ, P. DE; STEIN, F. Organização
da fala-em-interação: o dispositivo para o
gerenciamento de fala sobreposta na conversa cotidiana em dados de
português brasileiro. Revista de Estudos da
Linguagem, v. 23, n. 1, p. 159–194, 2015.
MORENO, J.; BRESSAN, G. FACTCK.BR: a new dataset to
study fake news. : WebMedia ’19.New York, NY, USA: Association
for Computing Machinery, 2019. Disponível em: <https://doi.org/10.1145/3323503.3361698>
MORENO SCHNEIDER, J. et al. Lynx: A knowledge-based
AI service platform for content processing, enrichment and analysis for
the legal domain. Information Systems, v. 106, p.
101966, 2022.
MORETTI, F. Distant Reading. [s.l.] Verso, 2013.
MOTA, C. R3M, uma participação minimalista no
Segundo HAREM. quot; In Cristina Mota; Diana Santos (ed)
Desafios na avaliação conjunta do
reconhecimento de entidades mencionadas: O Segundo HAREM Linguateca
2008, 2008.
MOTA, C. et al. É
tempo de avaliar o tempo. Em: MOTA, C.; SANTOS, D. (Eds.).
Desafios na avaliação conjunta do reconhecimento de
entidades mencionadas. [s.l.] Linguateca, 2008. p. 55–75.
MOTA, C. et al. Págico: Evaluating
Wikipedia-based information retrieval in
Portuguese. (N. Calzolari et al.,
Eds.)Proceedings of the Eigth
International Conference on
Language Resources and Evaluation
(LREC’12). Anais...Istambul: 2012.
Disponível em: <http://www.lrec-conf.org/proceedings/lrec2012/pdf/590_Paper.pdf>
MOTA, C. C. et al. Reconhecimento de
entidades nomeadas em documentos jurı́dicos em
português utilizando redes neurais. Encontro
Nacional de Inteligência Artificial e Computacional
(ENIAC). Anais...SBC, 2021.
MOTA, C.; SANTOS, D. (EDS.). Desafios na avaliação conjunta
do reconhecimento de entidades mencionadas: O Segundo
HAREM. [s.l.] Linguateca, 2008.
MOTA, C.; SANTOS, D.; RANCHHOD, E. Avaliação
de reconhecimento de entidades mencionadas: princı́pio de
HAREM. Avaliação
conjunta: um novo paradigma no processamento computacional da
lı́ngua portuguesa, p. 161–175, 2007.
MOTTA, E. Sentenças
Judiciais e Acessibilidade Textual e Terminológica. Domínios
de Lingu@gem, v. 15, n. 3, p. 761–813, 2021.
MOTTA, E. SENTENÇAS JUDICIAIS
E LINGUAGEM SIMPLES: um encontro possível e necessário.
mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2022.
MULLER, P. et al. Manuel d’annotation en relations de discours
du projet annodis., 2012.
MUNIZ, M. C. M. A
construção de recursos
linguístico-computacionais para o português do
Brasil: o projeto Unitex-PB. mathesis—[s.l.]
Instituto de Ciências Matemáticas e de
Computação - Universidade de São
Paulo - ICMC/USP, 2004.
MURTARELLI, G.; GREGORY, A.; ROMENTI, S. A
conversation-based perspective for shaping ethical human–machine
interactions: The particular challenge of chatbots. Journal
of Business Research, v. 129, p. 927–935, 2021.
MUSGRAVE, K.; BELONGIE, S.; LIM, S.-N. A metric learning reality
check. Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16.
Anais...Springer, 2020. Disponível em: <https://doi.org/10.1007/978-3-030-58595-2_41>
NADEAU, D. Semi-Supervised
Named Entity Recognition: Learning to Recognize 100 Entity Types with
Little Supervision. tese de doutorado—[s.l.] University of
Ottawa, 2007.
NAGAO, M. A
Framework of a Mechanical
Translation between Japanese and
English by Analogy Principle.
Em: NIRENBURG, S.; SOMERS, H. L.; WILKS, Y. A. (Eds.). Readings
in Machine Translation. [s.l.] The
MIT Press, 1984.
NAIR, S. S.; JEEVEN, V. A brief overview of metadata formats.
DESIDOC Journal of Library & Information
Technology, v. 24, n. 4, 2004.
NAMIUTI, C. O Corpus Anotado do
Português Histórico:
um avanço para as pesquisas em
Linguística
Histórica do
Português. Revista Virtual de Estudos
da Linguagem, v. 2, p. 1–9, ago. 2004.
NARDE, W. Análise de notícias falsas em rede social: uma
abordagem utilizando transferência de aprendizagem e
Transformers. https://www.monografias.ufop.br/bitstream/35400000/3122/6/MONOGRAFIA_AnáliseNotíciasFalsas.pdf,
2021.
NASAR, Z.; JAFFRY, S. W.; MALIK, M. K. Named entity recognition and
relation extraction: State-of-the-art. ACM Computing Surveys
(CSUR), v. 54, n. 1, p. 1–39, 2021.
NASCIMENTO, D. N. C. R. DO. Sumarização de artigos científicos
em português no domínio da saúde. mathesis—[s.l.] (Mestrado em
Informática) - Programa de Pós-Graduação em Informática da PUC-Rio, Rio
de Janeiro, 2023.
NASCIMENTO, G. et al. Hate speech detection using brazilian
imageboards. Proceedings of the 25th Brazillian Symposium on
Multimedia and the Web. Anais...2019.
NASCIMENTO, M. F. B. DO; GONÇALVES, J. B. Corpus
de Referência do Português
Contemporâneo (CRPC) - desenvolvimento e
aplicações. Actas do XI Encontro
Nacional da Associação Portuguesa de
Lingüı́stica, v. 1, p. 143–150, 1996.
NASCIMENTO, R. DA S. et al. Identificando Sinais de
Comportamento Depressivo em Redes Sociais. Anais do VII
Brazilian Workshop on Social Network Analysis and Mining.
Anais...Porto Alegre, Brazil: SBC, 2018.
NATH, N.; LEE, S.-H.; LEE, I. NEAR: Named Entity and
Attribute Recognition of Clinical Concepts. J. of Biomedical
Informatics, v. 130, n. C, jun. 2022.
NECO, R. P.; FORCADA, M. L. Asynchronous
translations with recurrent neural nets. Proceedings of
International Conference on Neural Networks (ICNN’97).
Anais...1997.
NENKOVA, A.; PASSONNEAU, R. J. Evaluating content selection in
summarization: The pyramid method. Proceedings of the human
language technology conference of the north american chapter of the
association for computational linguistics: Hlt-naacl 2004.
Anais...2004.
NETO, J. P. et al. Design of a multimodal input interface for a
dialogue system. Computational Processing of the Portuguese
Language: 7th International Workshop, PROPOR 2006, Itatiaia, Brazil, May
13-17, 2006. Proceedings 7. Anais...Springer, 2006.
Disponível em: <https://doi.org/10.1007/11751984_18>
NETO, J. R. C. S. A. V. S.; FALEIROS, T. DE P. Deep Active-Self
Learning Applied to Named Entity Recognition. (A. Britto, K.
Valdivia Delgado, Eds.)Intelligent Systems.
Anais...Cham: Springer International Publishing, 2021.
Disponível em: <https://avio11.github.io/resources/aposentadoria/aposentadoria.html>
NEURALMIND. NeuralMind disponibiliza modelo BERT do Google em
português. Neuralmind blog. Disponível em: <https://neuralmind.ai/2020/01/26/neuralmind-disponibiliza-modelo-bert-inteligencia-artificial-do-google-em-portugues/>.
NEVES, M. H. DE M. Texto e gramática.
[s.l.] Contexto, 2013.
NEWELL, A. A tutorial on speech understanding systems. Speech
recognition, p. 4–54, 1975.
NEWELL, E. et al. Assessing the Verifiability of Attributions in
News Text. (G. Kondrak, T. Watanabe, Eds.)Proceedings of the
Eighth International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Anais...Taipei, Taiwan: Asian
Federation of Natural Language Processing, nov. 2017. Disponível em:
<https://aclanthology.org/I17-1076>
NEWMAN, N. et al. Reuters institute digital news report
2020. [s.l.] Report of the Reuters Institute for the Study of
Journalism, 2020.
NG, V.; CARDIE, C. Improving machine learning approaches to
coreference resolution. Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2002.
NGUYEN, D. B.; THEOBALD, M.; WEIKUM, G. J-NERD: joint named entity
recognition and disambiguation with rich linguistic features.
Transactions of the Association for Computational
Linguistics, v. 4, p. 215–229, 2016.
NIJKAMP, E. et al. ProGen2: Exploring the
Boundaries of Protein Language Models. CoRR, v.
abs/2206.13517, 2022.
NIVRE, J. et al. The CoNLL 2007 Shared
Task on Dependency Parsing. Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL).
Anais...Prague, Czech Republic: Association for
Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/D07-1096>
NIVRE, J.; FANG, C.-T. Universal
Dependency Evaluation. (M.-C. de Marneffe, J.
Nivre, S. Schuster, Eds.)Proceedings of the
NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017).
Anais...Gothenburg, Sweden: Association for
Computational Linguistics, 2017. Disponível em: <https://aclanthology.org/W17-0411>
NIVRE, J.; NILSSON, J. Multiword units in syntactic
parsing. Proceedings of Methodologies and Evaluation of
Multiword Units in Real-World Applications (MEMURA), 2004.
NOGUEIRA, R. et al. Document expansion by query prediction.
arXiv preprint arXiv:1904.08375, 2019.
NOORALAHZADEH, F.; ØVRELID, L. Syntactic Dependency
Representations in Neural Relation Classification. Proceedings
of the Workshop on the Relevance of Linguistic Structure in Neural
Architectures for NLP. Anais...Melbourne,
Australia: Association for Computational Linguistics, jul. 2018.
Disponível em: <https://aclanthology.org/W18-2907>
NOVIKOVA, J. et al. Why We Need New Evaluation Metrics for
NLG. Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing.
Anais...: EMNLP’17.Copenhagen, Denmark: Association for
Computational Linguistics, 2017. Disponível em: <http://aclweb.org/anthology/D17-1237>
NOZAKI, J. et al. End-to-end
Speech-to-Punctuated-Text Recognition. Proc.
Interspeech 2022. Anais...2022.
NUNES, A. S. A
coconstrução do conhecimento através de jogos de linguagem em uma aula
de língua portuguesa: um estudo das estratégias de leitura a partir da
análise dos enquadres interacionais. mathesis—[s.l.]
Programa de Pós-Graduação em Letras, Mestrado Profissional (PROFLETRAS);
Universidade do Estado do Rio de Janeiro, 2016.
NUNES, E. G. Os marcadores
conversacionais na constituição do texto
falado. Verbum. Cadernos de
Pós-Graduação. ISSN
2316-3267, v. 6, n. 2, p. 120–125, 2017.
NUNES, M. DAS G. V. et al. O uso de interlíngua para
comunicação via Internet: a
decodificação UNL-português.
Revista Tecnologia da
Informação, v. 3, n. 1, p. 49–55,
2003.
NUNES, P. LEVANTAMENTO REVELA QUE 90,5% DOS PRESOS POR
MONITORAMENTO FACIAL NO BRASIL SÃO NEGROS. Disponível em:
<
https://www.intercept.com.br/2019/11/21/presos-monitoramento-facial-brasil-negros/>.
Acesso em: 28 ago. 2023.
NUNES, R. O. et al. Out of Sesame Street: A
Study of Portuguese Legal Named Entity Recognition Through In-Context
Learning. INSTICC; SciTePress, a2024.
NUNES, R. O. et al. A Named Entity Recognition Approach for
Portuguese Legislative Texts Using Self-Learning.
(P. Gamallo et al., Eds.)Proceedings of the 16th International
Conference on Computational Processing of Portuguese - Vol. 1.
Anais...Santiago de Compostela, Galicia/Spain:
Association for Computational Lingustics, mar. b2024. Disponível em:
<https://aclanthology.org/2024.propor-1.30>
O’BRIEN, S. Towards predicting post-editing productivity.
Machine translation, v. 25, p. 197–215, 2011.
O’BRIEN, S. et al. Dynamic Quality
Evaluation Framework. [s.l.] TAUS
Labs Report. The Translation Automation User Society-TAUS, 2011.
O’NEIL, C. Algoritmos de Destruição em Massa. [s.l.]
Editora Rua do Sabão, 2021.
OCH, F. J.; NEY, H. The Alignment Template
Approach to Statistical Machine Translation. Computational
Linguistics, v. 30, n. 4, p. 417–449, dez. 2004.
OECD. The OECD Framework for the Classification of AI
systems. Disponível em: <
https://wp.oecd.ai/app/uploads/2022/02/Classification-2-pager-1.pdf>.
Acesso em: 28 ago. 2023.
OECD. OECD
Employment Outlook 2023. [s.l: s.n.]. p. 267
OKANO, E. Y. et al. Fake News Detection on Fake.Br Using
Hierarchical Attention Networks. (P. Quaresma et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2020.
OKANO, E. Y.; RUIZ, E. E. S. Using linguistic cues to detect
fake news on the brazilian portuguese parallel corpus Fake.br.
Proceedings of the Symposium in Information and Human Language
Technology. Anais...Brazilian Computer Society, 2019.
OKSANEN, A. et al. Semantic
Finlex: Transforming, Publishing, and Using Finnish Legislation and Case
Law As Linked Open Data on the Web. Em: PERUGINELLI, G.; FARO, S.
(Eds.). Knowledge of the Law in the Big Data Age.
Frontiers em Artificial Intelligence e Applications. [s.l.] IOS Press,
2019a. v. 317p. 212–228.
OKSANEN, A. et al. ANOPPI: A Pseudonymization
Service for Finnish Court Documents. JURIX.
Anais...b2019.
OKSANEN, A. et al. An Anonymization Tool for Open Data
Publication of Legal Documents. Joint Proceedings of ISWC2022
Workshops. Anais...CEUR-WS. org, 2022. Disponível em:
<https://ceur-ws.org/Vol-3257/>
OLIVAL, F.; CAMERON, H.; VIEIRA, R. As Memórias Paroquiais: do
manuscrito ao digital. Actas da Jornada de Humanidades Digitais
do CIDEHUS (to appear). Anais...2022.
OLIVEIRA, F. S. et al. CML-TTS: A
Multilingual Dataset for Speech
Synthesis in Low-Resource Languages. International
Conference on Text, Speech, and
Dialogue. Anais...Springer, 2023.
OLIVEIRA, I. L. Uma
mentira repetida mil vezes se transforma em verdade? Reflexões sobre as
dinâmicas discursivas e seus efeitos na saúde. Em:
Desinformação o mal do século: Distorções, inverdades, fake
news: a democracia ameaçada. [s.l: s.n.]. p. 299–315.
OLIVEIRA, L. E. S. et al. SemClinBr
- a multi-institutional and multi-specialty semantically annotated
corpus for Portuguese clinical NLP tasks.
Journal of Biomedical Semantics, v. 13, n. 1, a2022.
OLIVEIRA, L. E. S. E. et al. Experiments on Portuguese Clinical
Question Answering. (A. Britto, K. Valdivia Delgado,
Eds.)Intelligent Systems. Anais...Cham: Springer
International Publishing, 2021.
OLIVEIRA, L. F. A. DE et al. Challenges In Annotating A Treebank
Of Clinical Narratives In Brazilian Portuguese. Computational
Processing of the Portuguese Language: 15th International Conference,
PROPOR 2022, Fortaleza, Brazil, March 21–23, 2022, Proceedings.
Anais...Berlin, Heidelberg: Springer-Verlag, b2022.
Disponível em: <https://doi.org/10.1007/978-3-030-98305-5_9>
OLIVEIRA, L. M. DE; DIAS, J. G. O autorreparo como
estratégia adaptativa na fala em
interação de um afásico.
Linguagem em (Dis) curso, v. 18, p. 49–68, 2018.
OLIVEIRA, L.; CLARO, D.; SOUZA, M. DptOIE: a Portuguese
open information extraction based on dependency analysis.
Artificial Intelligence Review, v. 56, p. 1–32, dez.
c2022.
OLIVEIRA, M. R. DE et al. Repetição
em diálogos: análise funcional da
conversação. Série
Ensaios, v. 9, 1998.
OLIVEIRA, M. R. DE. Manual de Linguística. Em: MARTELOTTA, M. E. (Ed.).
São Paulo: Contexto, 2008. p. 193–204.
OLIVEIRA, N. et al. Processamento de Linguagem Natural para
Identificação de Notícias Falsas em Redes Sociais: Ferramentas,
Tendências e Desafios. Em: [s.l.] SBC, 2020.
OLIVEIRA, R. L. DE; MARTINS, J. T.; PARABONI, I. Mental health
prediction from social media connections. New Review of
Hypermedia and Multimedia, a2024.
OLIVEIRA, R. L. DE; PARABONI, I. A Bag-of-Users approach
to mental health prediction from social media data.
16th International Conference on Computational Processing of
Portuguese (PROPOR 2024). Anais...Santiago de
Compostela, Spain: 2024.
OLIVEIRA, V. et al. Combining prompt-based
language models and weak supervision for labeling named entity
recognition on legal documents. Artificial Intelligence and
Law, p. 1–21, fev. b2024.
OLIVIERA JR., M. NURC
Digital: um protocolo para a digitalização, anotação,
arquivamento e disseminação do material do Projeto da
Norma Urbana Linguística
Culta (NURC). CHIMERA: Revista de
Corpus de Lenguas Romances y Estudios Lingüísticos, v. 3, n. 2,
p. 149–174, set. 2016.
ONAGA, T.; FUJITA, M.; YOSHINOBU, K. Japanese Legal Bar Problem
Solver Focusing on Person Names. Proceedings of the Tenth
International Competition on Legal Information Extraction/Entailment
(COLIEE 2023). Anais...2023. Disponível em: <https://sites.ualberta.ca/~rabelo/COLIEE2023>
OPENAI. ChatGPT: OpenA’s conversational AI model.
Disponível em: <https://openai.com/blog/chatgpt/>.
Acesso em: 7 abr. 2023.
ORENGO, V. M.; BURIOL, L. S.; COELHO, A. R. A study on the use
of stemming for monolingual ad-hoc Portuguese information
retrieval. Workshop of the Cross-Language Evaluation Forum for
European Languages. Anais...Springer, 2006.
ORENGO, V. M.; HUYCK, C. A Stemming Algorithmm
for the Portuguese Language. Proceedings Eighth Symposium
on String Processing and Information Retrieval.
Anais...IEEE Computer Society, 2001.
OSBORNE, D. M. The realization
of speech acts of refusals of an invitation among Brazilian
friends. Revista de estudos da linguagem, v. 18, n.
2, p. 61–85, 2010.
OSBORNE, T.; GERDES, K. The status of function
words in dependency grammar: A critique of Universal Dependencies
(UD). Glossa: a journal of general linguistics
(2016-2021), jan. 2019.
OSGOOD, C. E.; SUCI, G. J.; TENENBAUM, P. H. The Measurement of
meaning. Urbana: University of Illinois Press, 1957.
OSTENDORF, M.; PRICE, P.; SHATTUCK-HUFNAGEL, S. The
Boston University Radio news
corpus., 1995. Disponível em: <https://doi.org/10.35111/Z7XK-Z229>
OSTENDORFF, M. et al. Evaluating document representations for
content-based legal literature recommendations. Proceedings of
the Eighteenth International Conference on Artificial Intelligence and
Law. Anais...2021. Disponível em: <https://doi.org/10.1145/3462757.3466073>
OSTERMANN, A. C.; ANDRADE, D. N. P.; FREZZA, M. A
prosódia como componente de
formação e de
atribuição de sentido a
ações na
fala-em-interação: o caso de
formulações no tribunal. DELTA:
Documentação de Estudos em
Lingüı́stica Teórica e
Aplicada, v. 32, p. 481–513, 2016.
OTT, M. et al. Finding Deceptive Opinion Spam by Any Stretch of
the Imagination. (D. Lin, Y. Matsumoto, R. Mihalcea,
Eds.)Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies.
Anais...Portland, Oregon, USA: Association for
Computational Linguistics, jun. 2011. Disponível em: <https://aclanthology.org/P11-1032>
OUSHIRO, L. Wh-interrogatives
in Brazilian Portuguese: the influence of
common ground. University of Pennsylvania Working Papers in
Linguistics, v. 17, n. 2, p. 17, 2011.
OUSHIRO, L.; MENDES, R. B. A
Variação em interrogativas de constituinte no
fluxo conversacional. Signum: Estudos da Linguagem,
v. 15, n. 3, p. 273–292, 2012.
OUYANG, L. et al. Training language models to follow
instructions with human feedback. (A. H. Oh et al.,
Eds.)Advances in Neural Information Processing Systems.
Anais...2022. Disponível em: <https://openreview.net/forum?id=TG8KACxEON>
OVCHINNIKOVA, E. Integration of World Knowledge for Natural
Language Understanding. [s.l.] Atlantis Press, 2012.
OVERWIJK, A.; XIONG, C.; CALLAN, J. ClueWeb22: 10 Billion Web
Documents with Rich Information. (E. Amigó et al.,
Eds.)SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, Madrid, Spain, July 11 - 15, 2022.
Anais...ACM, 2022. Disponível em: <https://doi.org/10.1145/3477495.3536321>
ÖZSEVEN, T. Investigation of the effect of spectrogram images and
different texture analysis methods on speech emotion recognition.
Applied Acoustics, v. 142, p. 70–77, 2018.
PAETZOLD, G. H.; SPECIA, L. Unsupervised Lexical Simplification
for Non-native Speakers. Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. Anais...:
AAAI’16.Phoenix, Arizona: AAAI Press, a2016. Disponível em: <http://dl.acm.org/citation.cfm?id=3016387.3016433>
PAETZOLD, G.; SPECIA, L. Inferring Psycholinguistic Properties
of Words. NAACL HLT 2016, The 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016. Anais...b2016.
Disponível em: <http://aclweb.org/anthology/N/N16/N16-1050.pdf>
PAETZOLD, G.; SPECIA, L. Understanding the Lexical
Simplification Needs of Non-Native Speakers of
English. (Y. Matsumoto, R. Prasad,
Eds.)Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers.
Anais...Osaka, Japan: The COLING 2016 Organizing
Committee, dez. c2016. Disponível em: <https://aclanthology.org/C16-1069>
PAETZOLD, G.; SPECIA, L. Lexical Simplification with Neural
Ranking. Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Anais...Valencia, Spain: Association for
Computational Linguistics, abr. 2017. Disponível em: <http://www.aclweb.org/anthology/E17-2006>
PAGE, E. B.; PETERSEN, N. S. The Computer Moves into Essay Grading:
Updating the Ancient Test. Phi Delta Kappan, v. 76, p.
561–565, mar. 1995.
PAIOLA, P. H. Sumarização abstrativa de textos em português
utilizando aprendizado de máquina. mathesis—[s.l.] (Mestrado em
Ciências da Computação) - Programa de Pós-Graduação em Ciência da
Computação, Universidade Estadual Paulista J̈úlio de Mesquita Filhö,
2022.
PAIS, V. et al. Named Entity
Recognition in the Romanian Legal Domain.
Proceedings of the Natural Legal Language Processing Workshop 2021.
Anais...Punta Cana, Dominican Republic: Association for
Computational Linguistics, nov. 2021.
PAIS, V. et al. LegalNERo: A
linked corpus for named entity recognition in the Romanian legal
domain. Semantic Web journal, 2024.
PĂIŞ, V.; TUFIŞ, D. Capitalization
and punctuation restoration: a survey.
Artificial Intelligence Review, v. 55, p.
1681--1722, 2022.
PALMER, M.; FININ, T.; WALTER, S. M. Workshop on the
Evaluation of Natural Language Processing Systems.
[s.l.] Air Force Systems Command; Rome Air Development Center, 1988.
Disponível em: <https://ebiquity.umbc.edu/paper/html/id/1074>.
PALMER, M.; GILDEA, D.; KINGSBURY, P. The Proposition Bank: An
Annotated Corpus of Semantic Roles. Computational Linguistics,
31: 1. Anais...The MIT PressJournals, 2005.
PAPA, J. P.; FALCÃO, A. X.; SUZUKI, C. T. N. Supervised pattern
classification based on optimum-path forest. International
Journal of Imaging Systems and Technology, v. 19, n. 2, p.
120–131, 2009.
PAPINENI, K. et al. BLEU: A Method for Automatic
Evaluation of Machine Translation. Proceedings of the
40th Annual Meeting on Association for Computational Linguistics.
Anais...: ACL ’02.USA: Association for Computational
Linguistics, 2002. Disponível em: <https://doi.org/10.3115/1073083.1073135>
PARABONI, I.; GALINDO, M.; IACOVELLI, D. Stars2: a corpus of
object descriptions in a visual domain. Language Resources
and Evaluation, v. 51, n. 2, p. 439–462, 2017.
PARAGUASSU, L. et al. MedSimples: An Automated Simplification
Tool for Promoting Health Literacy in Brazil. DHandNLP@PROPOR.
Anais...2020. Disponível em: <https://api.semanticscholar.org/CorpusID:218910691>
PARDO, T. et al. Porttinari - a Large Multi-genre Treebank for
Brazilian Portuguese. Anais do XIII Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem Humana.
Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível
em: <https://sol.sbc.org.br/index.php/stil/article/view/17778>
PARDO, T. A. S. Gistsumm: Um sumarizador automático
baseado na ideia principal de textos. [s.l.] Série de
Relatórios do Núcleo Interinstitucional de Linguística Computacional,
Universidade de São Paulo, 2002.
PARDO, T. A. S. Métodos para análise
discursiva automática. tese de doutorado—[s.l.]
Universidade de São Paulo, 2005.
PARDO, T. A. S.; RINO, L. H. M. TeMário: Um corpus
para sumarização automática de
textos. [s.l.] Série de Relatórios
Técnicos da Universidade de São Carlos, 2003.
PARIDA, S.; MOTLICEK, P. Abstract text summarization: A low
resource challenge. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...2019.
PARK, D. S. et al. SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.
Interspeech 2019. Anais...ISCA, set. 2019.
Disponível em: <https://doi.org/10.21437%2Finterspeech.2019-2680>
PARK, S. et al. Activities on Facebook Reveal the Depressive State of
Users. J Med Internet Res, v. 15, n. 10, p. e217, 2013.
PARMAR, M. et al. Don’t Blame the Annotator: Bias Already Starts
in the Annotation Instructions. Proceedings of the 17th
Conference of the European Chapter of the Association for Computational
Linguistics. Anais...Dubrovnik, Croatia: Association
for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.130>
PAROUBEK, P.; CHAUDIRON, S.; HIRSCHMAN, L. Principles of
Evaluation in Natural Language Processing. Traitement
Automatique des Langues, Volume 48, Numéro 1 : Principes de
l’évaluation en Traitement Automatique des Langues
[Principles of Evaluation in Natural Language Processing].
Anais...France: ATALA (Association pour le Traitement
Automatique des Langues), a2007. Disponível em: <https://aclanthology.org/2007.tal-1.1>
PAROUBEK, P.; CHAUDIRON, S.; HIRSCHMAN, L. Principles of Evaluation in
Natural Language Processing. Revue TAL, v. 48, n.
1, p. 7–31, b2007.
PARRA ESCARTÍN, C. et al. Ethical Considerations in
NLP Shared Tasks. Proceedings of the First
ACL Workshop on Ethics in Natural Language Processing.
Anais...Valencia, Spain: Association for Computational
Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/W17-1608>
PARRA ESCARTÍN, C.; NEVADO LLOPIS, A.; SÁNCHEZ MARTÍNEZ, E. Spanish multiword
expressions: Looking for a taxonomy. Em: Multiword
expressions: Insights from a multi-lingual perspective. [s.l.]
Language Science Press, 2018. p. 271–323.
PASCHOAL, A. F. et al. Pirá: A bilingual
Portuguese-English dataset for
question-answering about the ocean. Proceedings of the 30th ACM
International Conference on Information & Knowledge Management.
Anais...2021. Disponível em: <https://doi.org/10.1145/3459637.3482012>
PASCHOAL, L. N. et al. Towards a Conversational Agent to Support
the Software Testing Education. Proceedings of the XXXIII
Brazilian Symposium on Software Engineering. Anais...:
SBES ’19.New York, NY, USA: Association for Computing Machinery, 2019.
Disponível em: <https://doi.org/10.1145/3350768.3352456>
PASQUALINI, B. Corpop : um corpus de referência do português
popular escrito do Brasil. UFRGS - Porto Alegre - RS: Instituto
de Letras - UFRGS, 2018.
PASQUALOTTI, P. R. WordNet Affect BR – uma base de expressões de
emoção em Português. [s.l.] Novas Edições Acadêmicas, 2015.
PASQUER, C. et al. Verbal Multiword
Expression Identification: Do We Need a Sledgehammer to Crack a
Nut? Proceedings of the 28th International Conference on
Computational Linguistics. Anais...Barcelona, Spain
(Online): International Committee on Computational Linguistics, dez.
2020.
PAULLADA, A. et al. Data and its (dis)
contents: A survey of dataset development and use in machine learning
research. Patterns, v. 2, n. 11, 2021.
PELLE, R. P. DE; MOREIRA, V. Offensive Comments in the Brazilian
Web: a dataset and baseline results. Anais do VI Brazilian
Workshop on Social Network Analysis and Mining.
Anais...2017.
PENNEBAKER, J. W. et al. The development and psychometric properties of
LIWC2015. The University of Texas at Austin, 2015.
PENNEBAKER, J. W.; FRANCIS, M. E.; BOOTH, R. J. Linguistic
Inquiry and Word Count. [s.l.] Lawerence Erlbaum Associates,
2001.
PENNINGTON, J.; SOCHER, R.; MANNING, C.
GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Anais...Doha, Qatar: Association for Computational
Linguistics, out. 2014. Disponível em: <https://aclanthology.org/D14-1162>
PEREIRA, A. et al. Systematic review of question answering over
knowledge bases. IET Software, v. 16, n. 1, p. 1–13,
2022.
PEREIRA, D. A. A Survey of Sentiment Analysis in the Portuguese
Language. Artificial Intelligence Review, 2021.
PEREIRA, V.; PINHEIRO, V. Report - um sistema de
extração de
informações aberta para língua
portuguesa. Anais do X Simpósio Brasileiro de
Tecnologia da Informação e da Linguagem
Humana. Anais...SBC, 2015.
PEREZ-BELTRACHINI, L. et al. Content selection as semantic-based
ontology exploration. (C. Gardent, A. Gangemi, Eds.)Proceedings
of the 2nd International Workshop on Natural Language Generation and the
Semantic Web (WebNLG 2016).
Anais...Edinburgh, Scotland: Association for
Computational Linguistics, set. 2016. Disponível em: <https://aclanthology.org/W16-3508>
PÉREZ-ROSAS, V.; MIHALCEA, R. Cross-cultural Deception
Detection. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.
Anais...Baltimore, MD, USA: Association for
Computational Linguistics, 2014.
PERRAULT, C. R.; ALLEN, J. F. Speech Acts as a Basis for
Understanding Dialogue Coherence. Theoretical Issues in Natural
Language Processing-2. Anais...1978. Disponível em:
<https://aclanthology.org/T78-1017>
PERRIGO, B. Disponível em: <https://time.com/6247678/openai-chatgpt-kenya-workers/>.
Acesso em: 9 abr. 2023.
PERSING, I.; NG, V. Modeling Prompt Adherence in Student
Essays. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.
Anais...Baltimore, Maryland: Association for
Computational Linguistics, jun. 2014.
PETERS, M. E. et al. Semi-supervised sequence tagging with
bidirectional language models. Proc. of ACL-2017.
Anais...Vancouver, Canada: Association for
Computational Linguistics, 2017.
PETERS, M. E. et al. Deep Contextualized Word
Representations. (M. A. Walker, H. Ji, A. Stent,
Eds.)Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers).
Anais...Association for Computational Linguistics,
2018. Disponível em: <https://doi.org/10.18653/v1/n18-1202>
PETRI, M. J. C. Manual de Linguagem Jurídica. 3rd. ed.
São Paulo: Saraiva, 2017.
PIĘKOS, P.; MALINOWSKI, M.; MICHALEWSKI, H. Measuring and
Improving BERT’s Mathematical Abilities by
Predicting the Order of Reasoning. Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Anais...Online: Association
for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-short.49>
PILÁN, I. et al. The text anonymization benchmark (tab): A dedicated
corpus and evaluation framework for text anonymization.
Computational Linguistics, v. 48, n. 4, p. 1053–1101,
2022.
PIMENTEL, C. L. A
elaboração de um corpus oral: a etapa de
transcrição da
interação na sala de aula de
português como lı́ngua adicional.
mathesis—[s.l.] Pontifı́cia Universidade
Católica do Rio Grande do Sul, 2016.
PING, W. et al. Deep voice 3: 2000-speaker neural text-to-speech.
arXiv preprint arXiv:1710.07654, 2017.
PINHEIRO, V. et al. InferenceNet.Br: Expression of
Inferentialist Semantic Content of the Portuguese Language. (T.
A. S. Pardo et al., Eds.)Computational Processing of the Portuguese
Language. Anais...Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.
PIRES, I.; CASELI, H.; NERIS, V. Design de um chatbot para o
diálogo com universitários com possível perfil depressivo.
Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à
Saúde. Anais...Porto Alegre, RS, Brasil: SBC, a2023.
Disponível em: <https://sol.sbc.org.br/index.php/sbcas_estendido/article/view/25323>
PIRES, R. et al. Sabiá: Portuguese Large Language
Models. (M. C. Naldi, R. A. C. Bianchi, Eds.)Intelligent
Systems. Anais...Cham: Springer Nature Switzerland,
b2023.
PIRINA, I.; ÇÖLTEKIN, ÇAĞRI. Identifying Depression on
Reddit: The Effect of Training Data. Proceedings
of the 2018 EMNLP Workshop SMM4H:
The 3rd Social Media Mining for Health Applications Workshop
& Shared Task. Anais...2018.
PITLER, E.; LOUIS, A.; NENKOVA, A. Automatic evaluation of
linguistic quality in multi-document summarization. Proceedings
of the 48th Annual Meeting of the Association for Computational
Linguistics. Anais...2010.
PLACANI, A. Anthropomorphism in
AI: hype and fallacy. AI and Ethics, p. 1–8, 2024.
POESIO, M.; STUCKARDT, R.; VERSLEY, Y. Anaphora
Resolution: Algorithms, Resources, and Applications. 1.
ed. [s.l.] Springer, 2016.
POLO, F. M. et al. LegalNLP – Natural Language Processing
methods for the Brazilian Legal Language., 2021. Disponível em:
<https://arxiv.org/abs/2110.15709>
PONTES, L. B. L.; OLIVEIRA, H. T. A. DE; ASSIS BOLDT, F. DE.
Avaliação de Modelos Neurais para
Sumarização de
Código-fonte. Anais do XLIX Seminário
Integrado de Software e Hardware. Anais...SBC, 2022.
PONTIKI, M. et al. SemEval-2014 Task
4: Aspect Based Sentiment Analysis. Proceedings of the 8th
International Workshop on Semantic Evaluation (SemEval 2014).
Anais...Association for Computational Linguistics,
2014. Disponível em: <https://aclanthology.org/S14-2004/>
PONTIKI, M. et al. SemEval-2015 Task
12: Aspect Based Sentiment Analysis. Proceedings of the 9th
International Workshop on Semantic Evaluation.
Anais...2015.
PONTIKI, M. et al. SemEval-2016 Task
5: Aspect Based Sentiment Analysis. Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016). Anais...2016.
POPIEL, S. J.; MCRAE, K. The figurative and literal
senses of idioms, or all idioms are not used equally.
Journal of Psycholinguistic Research, v. 17, n. 6, p.
475–487, 1 nov. 1988.
POPOVIC, M.; BURCHARDT, A. From Human to Automatic Error
Classification for Machine Translation Output. Proceedings of
the 15th Conference of the European Association for Machine Translation.
Anais...Leuven, Belgium: 2011. Disponível em: <https://aclanthology.org/2011.eamt-1.36.pdf>
POPOVIĆ, M. chrF: character n-gram
F-score for automatic MT evaluation.
Proceedings of the Tenth Workshop on Statistical Machine Translation.
Anais...Lisbon, Portugal: Association for Computational
Linguistics, set. 2015. Disponível em: <https://aclanthology.org/W15-3049>
POPOVIĆ, M. chrF++: words helping character n-grams.
Proceedings of the second conference on machine translation.
Anais...2017.
PORTER, M. F. An algorithm
for suffix stripping. Program, v. 14, n. 3, p.
130–137, 1980.
PORTET, F. et al. Automatic generation of textual summaries from
neonatal intensive care data. Artificial Intelligence,
v. 173, n. 7–8, p. 789–816, 2009.
POSNER, J.; RUSSELL, J. A.; PETERSON, B. S. The circumplex model of
affect: An integrative approach to affective neuroscience, cognitive
development, and psychopathology. Development and
psychopathology, v. 17, n. 3, p. 715–734, 2005.
PRABHAKARAN, V.; RAMBOW, O. Written Dialog and Social Power:
Manifestations of Different Types of Power in Dialog Behavior.
Proceedings of the Sixth International Joint Conference on Natural
Language Processing. Anais...Nagoya, Japan: Asian
Federation of Natural Language Processing, out. 2013. Disponível em:
<https://aclanthology.org/I13-1025>
PRADEEP, R. et al. H2oloo
at trec 2020: When all you got is a hammer... deep learning, health
misinformation, and precision medicine. Corpus, v.
5, n. d3, p. d2, 2020.
PRADHAN, S. et al. CoNLL-2011 shared task: Modeling unrestricted
coreference in ontonotes. Proceedings of the Fifteenth
Conference on Computational Natural Language Learning: Shared Task.
Anais...Portland, Oregon: Association for Computational
Linguistics, 2011.
PRADHAN, S. et al. CoNLL-2012 shared task: Modeling multilingual
unrestricted coreference in OntoNotes. Proceedings of Joint
Conference on Empirical Methods in Natural Language Processing and
Conference on Natural Language Learning - Shared Task.
Anais...Jeju Island, Korea: 2012.
PRADHAN, S. et al. Scoring Coreference Partitions of Predicted
Mentions: A Reference Implementation. Proceedings
of the 52nd Annual Meeting of the Association for Computational
Linguistics. Anais...Baltimore, MD, USA: 2014.
Disponível em: <http://aclweb.org/anthology/P/P14/P14-2006.pdf>
PRATAP, V. et al. Massively Multilingual ASR: 50 Languages, 1
Model, 1 Billion Parameters., a2020. Disponível em: <https://arxiv.org/abs/2007.03001>
PRATAP, V. et al. MLS: A Large-Scale Multilingual Dataset for Speech
Research. Proc. Interspeech 2020, p. 2757–2761, b2020.
PROVILKOV, I.; EMELIANENKO, D.; VOITA, E. BPE-Dropout:
Simple and Effective Subword Regularization. Proceedings of
the 58th Annual Meeting of the Association for Computational
Linguistics. Anais...Online: Association for
Computational Linguistics, jul. 2020.
PRZEPIÓRKOWSKI, A. et al. Extended phraseological information in
a valence dictionary for NLP applications.
Proceedings of Workshop on Lexical and Grammatical Resources for
Language Processing. Anais...Dublin, Ireland:
Association for Computational Linguistics; Dublin City University, ago.
2014. Disponível em: <https://aclanthology.org/W14-5811>
PURINGTON, A. et al. " Alexa is my new BFF" Social Roles, User
Satisfaction, and Personification of the Amazon Echo.
Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. Anais...2017.
PURVER, M. et al. Split Utterances in Dialogue: a Corpus
Study. Proceedings of the SIGDIAL 2009 Conference.
Anais...London, UK: Association for Computational
Linguistics, set. 2009. Disponível em: <https://aclanthology.org/W09-3937>
PURVER, M. R. J. The
theory and use of clarification requests in dialogue. tese
de doutorado—[s.l.] University of London, 2004.
QIU, Q. et al. BiLSTM-CRF for geological named entity recognition from
the geoscience literature. Earth Science Informatics,
v. 12, n. 4, p. 565–579, 2019.
QUARESMA, P.; FINATTO, M. J. B. Information Extraction from
Historical Texts: a Case Study. DHandNLP@ PROPOR.
Anais...2020.
QUARESMA, P.; GONÇALVES, T. Using Linguistic
Information and Machine Learning Techniques to Identify Entities from
Juridical Documents. Em: FRANCESCONI, E. et al. (Eds.).
Semantic Processing of Legal Texts: Where the Language of Law
Meets the Law of Language. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010. p. 44–59.
QUARESMA, P.; RODRIGUES, I. Using dialogues to access semantic
knowledge in a web IR system. Computational
Processing of the Portuguese Language: 6th International Workshop,
PROPOR 2003 Faro, Portugal, June 26–27, 2003 Proceedings 6.
Anais...Springer, 2003. Disponível em: <https://doi.org/10.1007/3-540-45011-4_32>
QUARESMA, P.; RODRIGUES, I. A Question-Answering System for
Portuguese Juridical Documents. Proceedings of the 10th
International Conference on Artificial Intelligence and Law.
Anais...: ICAIL ’05.New York, NY, USA: Association for
Computing Machinery, 2005. Disponível em: <https://doi.org/10.1145/1165485.1165536>
QUINTANILHA, I. M.; NETTO, S. L.; BISCAINHO, L. W. P. An open-source
end-to-end ASR system for Brazilian Portuguese using DNNs built from
newly assembled corpora. Journal of Communication and
Information Systems, v. 35, n. 1, p. 230–242, 2020.
QUINTANO, L.; RODRIGUES, I. Managing dialog and access control
in natural language querying. Computational Processing of the
Portuguese Language: 6th International Workshop, PROPOR 2003 Faro,
Portugal, June 26–27, 2003 Proceedings 6.
Anais...Springer, 2003. Disponível em: <https://doi.org/10.1007/3-540-45011-4_33>
RABINER, L. R.; JUANG, B. H. Fundamentals of
Speech Recognition. [s.l.] Pearson Education, 1993.
RADEMAKER, A. et al. Universal
Dependencies for Portuguese.
Proceedings of the Fourth International Conference on Dependency
Linguistics (Depling 2017). Anais...Pisa,Italy:
Linköping University Electronic Press, set. 2017.
Disponível em: <https://aclanthology.org/W17-6523>
RADEV, D. R. A common theory of information fusion from multiple
text sources step one: cross-document structure. 1st SIGdial
workshop on Discourse and Dialogue. Anais...2000.
RADFORD, A. et al. Language Models are Unsupervised Multitask
Learners. 2019.
RADFORD, A. et al. Robust speech recognition via large-scale weak
supervision. arXiv preprint arXiv:2212.04356, 2022.
RADFORD, A.; NARASIMHAN, K. Improving Language Understanding by
Generative Pre-Training. 2018.
RAE, J. W. et al. Scaling
Language Models: Methods, Analysis & Insights from
Training Gopher. CoRR, v. abs/2112.11446, 2021.
RAFFEL, C. et al. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research, v. 21, n. 140, p.
1–67, 2020.
RAHMAN, A.; NG, V. Coreference Resolution with World
Knowledge. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies.
Anais...Portland, Oregon, USA: b2011. Disponível em:
<http://www.aclweb.org/anthology/P11-1082>
RAHMAN, A.; NG, V. Narrowing the modeling gap: a cluster-ranking
approach to coreference resolution. Journal of Artificial
Intelligence Research, p. 469–521, a2011.
RAJI, D. et al. AI and the Everything in the Whole Wide World
Benchmark. (J. Vanschoren, S. Yeung, Eds.)Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks.
Anais...Curran, 2021. Disponível em: <https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper-round2.pdf>
RAJPURKAR, P. et al. SQuAD: 100,000+
Questions for Machine Comprehension of Text. (J. Su, K. Duh, X.
Carreras, Eds.)Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Anais...Austin, Texas:
Association for Computational Linguistics, nov. 2016. Disponível em:
<https://aclanthology.org/D16-1264>
RAMISCH, C. Multiword
Expressions Acquisition: A Generic and Open
Framework. [s.l.] Springer, 2015. v. XIVp. 230
RAMISCH, C. et al. DeQue: A Lexicon of
Complex Prepositions and Conjunctions in French.
Proceedings of LREC 2016.
Anais...Portoroz, Slovenia: ELRA, a2016.
RAMISCH, C. et al. How Naked is the Naked
Truth? A Multilingual Lexicon of Nominal Compound
Compositionality. Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers).
Anais...Berlin, Germany: ACL, b2016.
RAMISCH, C. et al. Edition 1.1 of the PARSEME
Shared Task on Automatic Identification of Verbal Multiword
Expressions. Proceedings of the Joint Workshop on Linguistic
Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018).
Anais...Santa Fe, NM, USA: ACL, a2018.
RAMISCH, C. et al. A Corpus Study of
Verbal Multiword Expressions in Brazilian
Portuguese. Computational Processing of the
Portuguese Language 13th International Conference, PROPOR 2018, Canela,
Brazil, September 24–26, 2018, Proceedings. Anais...:
Lecture Notes em Artificial Intelligence.Cham, Switzerland: Springer
International Publishing, b2018.
RAMISCH, C. et al. Edition 1.2 of the PARSEME
Shared Task on Semi-supervised Identification of Verbal Multiword
Expressions. Proceedings of the Joint Workshop on Multiword
Expressions and Electronic Lexicons. Anais...online:
Association for Computational Linguistics, 2020. Disponível em: <https://www.aclweb.org/anthology/2020.mwe-1.14>
RAMISCH, C. Multiword expressions in
computational linguistics: down the rabbit hole and through the looking
glass. tese de doutorado—Marseille, France: Aix Marseille
University, 2023.
RAMISCH, C.; BESACIER, L.; KOBZAR, A. How hard is it to
automatically translate phrasal verbs from English to
French? MT Summit 2013 Workshop on
Multi-word Units in Machine Translation and Translation Technology.
Anais...Nice, France: 2013.
RAMISCH, C.; VILLAVICENCIO, A. Computational
Treatment of Multiword Expressions. Em: MITKOV, R. (Ed.).
The Oxford Handbook of Computational Linguistics. 2nd.
ed. [s.l.] Oxford University Press, 2018.
RAMISCH, R. Caracterização de desvios
sintáticos em redações de
estudantes do ensino médio: subsídios para o
processamento automático das línguas
naturais. mathesis—[s.l.] Universidade Federal de
São Carlos, 2020.
RANA, M. S. et al. Deepfake Detection: A
Systematic Literature Review. IEEE Access, v. 10,
p. 25494–25513, 2022.
RANCHHOD, E.; MOTA, C.; BAPTISTA, J. A Computational Lexicon of
Portuguese for Automatic Text Parsing.
SIGLEX99: Standardizing Lexical Resources.
Anais...1999. Disponível em: <https://aclanthology.org/W99-0511>
RAO, K. S.; KOOLAGUDI, S. G.; VEMPADA, R. R. Emotion recognition from
speech using global and local prosodic features. International
journal of speech technology, v. 16, p. 143–160, 2013.
RASO, T. et al. O projeto
C-ORAL-BRASIL. CHIMERA: Revista de Corpus de
Lenguas Romances y Estudios
Lingüı́sticos, v. 1, p. 31–67, 2015.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de
referência do português brasileiro falado informal. Belo
Horizonte: Editora UFMG, 2012a.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de
referência do português brasileiro falado
informal. A general presentation. Speech and
Corpora, p. 16, b2012.
RASO, T.; TEIXEIRA, B.; BARBOSA, P. Modelling automatic
detection of prosodic boundaries for Brazilian
Portuguese spontaneous speech. Journal of
Speech Sciences, v. 9, p. 105–128, set. 2020.
RAU, L. F. Extracting company names from text.
Proceedings the Seventh IEEE Conference on Artificial Intelligence
Application. Anais...IEEE Computer Society, 1991.
RAYNER, K. Eye Movements in Reading and Information Processing: 20 Years
of Research. Psychological Bulletin - APA, vol. 124 n.
3, p. 372–422, 1998.
READ, J. et al. Sentence Boundary Detection: A Long Solved
Problem? Proceedings of COLING 2012: Posters.
Anais...Mumbai, India: The COLING 2012 Organizing
Committee, dez. 2012. Disponível em: <https://aclanthology.org/C12-2096>
REAL, L.; FONSECA, E.; GONÇALO OLIVEIRA, H. Organizing the
ASSIN 2 Shared Task. Proceedings of the ASSIN 2
Shared Task: Evaluating Semantic Textual Similarity and Textual
Entailment in Portuguese: co-located with XII Symposium in Information
and Human Language Technology (STIL 2019).
Anais...2019. Disponível em: <https://ceur-ws.org/Vol-2583/1_ASSIN-2.pdf>
REAL, L.; FONSECA, E.; GONÇALO OLIVEIRA, H. The ASSIN 2 Shared
Task: A Quick Overview. Computational Processing of the
Portuguese Language: 14th International Conference, PROPOR 2020, Evora,
Portugal, March 2–4, 2020, Proceedings. Anais...Berlin,
Heidelberg: Springer-Verlag, 2020. Disponível em: <https://doi.org/10.1007/978-3-030-41505-1_39>
RECASENS, M.; HOVY, E. H. BLANC:
Implementing the Rand index for coreference evaluation.
Natural Language Engineering, v. 17, n. 4, p. 485–510,
2011.
RECUERO, R. Redes Sociais na Internet. [s.l.] Ciber
Cultura, 2009.
REDDY, S.; MCCARTHY, D.; MANANDHAR, S. An Empirical Study on
Compositionality in Compound Nouns. Proceedings of 5th
International Joint Conference on Natural Language Processing.
Anais...Chiang Mai, Thailand: Asian Federation of
Natural Language Processing, nov. 2011. Disponível em: <https://aclanthology.org/I11-1024>
REI, R. et al. COMET: A Neural Framework for
MT Evaluation. Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.213>
REIMERS, N.; GUREVYCH, I. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing.
Anais...Association for Computational Linguistics, nov.
2019. Disponível em: <https://arxiv.org/abs/1908.10084>
REIMERS, N.; GUREVYCH, I. Making Monolingual Sentence Embeddings
Multilingual using Knowledge Distillation. Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing.
Anais...Association for Computational Linguistics, nov.
2020. Disponível em: <https://arxiv.org/abs/2004.09813>
REIS, E. S.; SILVA, L. A. DA. Planejamento e
replanejamento dos turnos conversacionais. Cadernos do
CNLF, v. 17, n. 2, p. 1–2013, 2013.
REIS, G. B. Predição da Complexidade Textual de Notícias Jornalísticas
usando uma Plataforma Crowdsourcing. Monografia Conclusão Curso
- USP, 2017.
REITER, E. et al. Choosing Words in
Computer-generated Weather Forecasts. Artificial
Intelligence, v. 167, n. 1-2, p. 137–169, set. 2005.
REITER, E. An Architecture for Data-to-text Systems.
Proceedings of ENLG-2007. Anais...: ENLG’07.Germany:
Association for Computational Linguistics, 2007. Disponível em: <http://dl.acm.org/citation.cfm?id=1610163.1610180>
REITER, E. A Structured
Review of the Validity of BLEU. Computational
Linguistics, v. 44, n. 3, p. 393–401, 2018.
REITER, E.; DALE, R. Building natural language generation
systems. New York, NY, USA: Cambridge University Press, 2000.
REITER, E.; ROBERTSON, R.; OSMAN, L. M. Lessons from a failure:
Generating tailored smoking cessation letters. Artificial
Intelligence, v. 144, n. 1, p. 41–58, 2003.
RESENDE, G. et al. (Mis)Information Dissemination in WhatsApp:
Gathering, Analyzing and Countermeasures. Proceedings of the
World Wide Web Conference. Anais...2019.
RESNIK, P.; LIN, J. Evaluation of NLP
systems. Em: The handbook of computational linguistics and
natural language processing. [s.l.] Wiley Online Library, 2010.
p. 271–295.
REVIEW, M. T. Um aplicativo de Inteligência Artificial que
“desnudava” mulheres mostra como as deepfakes prejudicam os
mais vulneráveis. Disponível em: <
https://mittechreview.com.br/um-aplicativo-de-inteligencia-artificial-que-desnudava-mulheres-mostra-como-as-deepfakes-prejudicam-os-mais-vulneraveis/>.
Acesso em: 28 ago. 2023.
REYES, A.; ROSSO, P.; BUSCALDI, D. From Humor Recognition to Irony
Detection: The Figurative Language of Social Media. Data &
Knowledge Engineering, 2012.
RIBEIRO, A. S. O projecto MONSOON: perspectivas digitais da
Índia portuguesa. Actas da Jornada de Humanidades Digitais do
CIDEHUS (to appear). Anais...2022.
RIBEIRO, M. T. et al. Beyond Accuracy: Behavioral Testing of
NLP Models with
CheckList. Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics.
Anais...Online: Association for Computational
Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.442>
RICARTE NETO, F. A. et al. Team PiLN at ABSAPT 2022: Lexical and
BERT Strategies for Aspect-Based Sentiment Analysis in
Portuguese. Proceedings of the Iberian Languages Evaluation
Forum (IberLEF 2022) co-located with the Conference of the Spanish
Society for Natural Language Processing (SEPLN 2022),
A Coruña, Spain, September 20, 2022.
Anais...2022.
RICKARD, E. M. S. A. M. L. K. A. B. D. F. A. N. S. Predicting Depression From
Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and
Twitter Status Updates. Journal of Medical Internet
Research, v. 20, n. 5, p. e168, 2018.
RIESER, V.; LEMON, O. Reinforcement learning
for adaptive dialogue systems: a data-driven methodology for dialogue
management and natural language generation. [s.l.] Springer
Science & Business Media, 2011.
RIJSBERGEN, C. JOOST. VAN. Information Retrieval.
[s.l.] Butterworths, 1979.
RILOFF, E. et al. Automatically constructing a dictionary for
information extraction tasks. AAAI.
Anais...Citeseer, 1993.
RILOFF, E.; JONES, R.; et al. Learning dictionaries for
information extraction by multi-level bootstrapping. AAAI/IAAI.
Anais...1999.
RINO, L. H. M.; PARDO, T. A. S. A
Sumarização Automática de textos:
principais caracterı́sticas e metodologias. Anais
do XXIII Congresso da Sociedade Brasileira de
Computação. Anais...2003.
RIZZOLATTI, G.; ARBIB, M. A. Language within our
grasp. Trends in Neurosciences, v. 21, n. 5, p.
188–194, 1998.
RO, Y.; LEE, Y.; KANG, P.
Multi^2OIE: Multilingual
Open Information Extraction Based on Multi-Head Attention with
BERT. Findings of the Association for
Computational Linguistics: EMNLP 2020. Anais...Online:
Association for Computational Linguistics, nov. 2020. Disponível em:
<https://aclanthology.org/2020.findings-emnlp.99>
ROARK, B.; CHARNIAK, E. Noun-phrase co-occurrence statistics for
semi-automatic semantic lexicon construction. arXiv preprint
cs/0008026, 2000.
ROBERTS, A. et al. Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. [s.l.] Google, 2019.
ROBERTS, F.; FRANCIS, A. L.; MORGAN, M. The interaction of
inter-turn silence with prosodic cues in listener perceptions of
“trouble” in conversation. Speech
communication, v. 48, n. 9, p. 1079–1093, 2006.
ROBERTSON, S. E.; SPÄRCK JONES, K. Relevance weighting of search terms.
Journal of the American Society for Information
science, v. 27, n. 3, p. 129–146, 1976.
ROBERTSON, S. E.; WALKER, S. Okapi/keenbow at trec-8.
TREC. Anais...Citeseer, 1999. Disponível em: <https://trec.nist.gov/pubs/trec8/papers/okapi.pdf>
ROCCHIO-JR, J. J. Relevance feedback in information retrieval.
The SMART retrieval system: experiments in automatic document
processing, 1971.
ROCHA, E. B.; PIMENTEL, M.; DINIZ, M. C. Desenvolvimento de um
Modelo da Participação em Bate papo seguindo a abordagem Design Science
Research. Anais do X Simpósio Brasileiro de Sistemas de
Informação. Anais...Porto Alegre, RS, Brasil: SBC,
2014. Disponível em: <https://sol.sbc.org.br/index.php/sbsi/article/view/6099>
ROCHA, M. A corpus-based study of anaphora in English and Portuguese,
Corpus-based and Computational Approaches to Discourse Anaphora. Em:
[s.l.] John Benjamins Publishing Company, 2000. p. 81–94.
ROCHA, P.; SANTOS, D. CLEF:
Abrindo a porta à participação internacional em avaliação
de RI do português. Em: SANTOS, D. (Ed.).
Avaliação conjunta: um novo paradigma no
processamento computacional da língua portuguesa. Lisboa,
Portugal: IST Press, 2007. p. 143–158.
RODRIGUES, I. M. G. Fala e
movimentos do corpo na interacção face a face:
estratégias de reparação e de
(des) focalização e
co-funções conversacionais na
manutenção de vez. tese de
doutorado—[s.l.] Universidade do Porto, 2003.
RODRIGUES, J. et al. Advancing Neural
Encoding of Portuguese with Transformer Albertina PT-.
CoRR, v. abs/2305.06721, 2023.
RODRIGUES, R. C. et al. Portuguese Language
Models and Word Embeddings: Evaluating on Semantic Similarity
Tasks. (P. Quaresma et al., Eds.)Computational Processing
of the Portuguese Language. Anais...Springer Nature
Switzerland AG: Springer International Publishing, 2020.
RODRIGUES, R.; GOMES, P. RAPPORT — A Portuguese
Question-Answering System. (F. Pereira et al., Eds.)Progress in
Artificial Intelligence. Anais...Cham: Springer
International Publishing, 2015.
RODRÍGUEZ, M. M.; BEZERRA, B. L. D. Processamento de
linguagem natural para reconhecimento de entidades nomeadas em textos
jurı́dicos de atos administrativos (portarias).
Revista de Engenharia e Pesquisa Aplicada, v. 5, n. 1,
p. 67–77, 2020.
ROGERS, A. Changing the World by Changing the Data.
Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers).
Anais...Online: Association for Computational
Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-long.170>
ROGERS, A.; KOVALEVA, O.; RUMSHISKY, A. A primer in BERTology: What we
know about how BERT works. Transactions of the Association for
Computational Linguistics, v. 8, p. 842–866, 2021.
ROHANIAN, O. et al. Verbal Multiword Expressions for
Identification of Metaphor. Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.
Anais...Online: Association for Computational
Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.259>
ROLLER, S.; SCHULTE IM WALDE, S. Feature Norms of
German Noun Compounds. (V. Kordoni et al.,
Eds.)Proceedings of the 10th Workshop on Multiword Expressions
(MWE). Anais...Gothenburg, Sweden:
Association for Computational Linguistics, abr. 2014. Disponível em:
<https://aclanthology.org/W14-0818>
ROLLER, S.; SCHULTE IM WALDE, S.; SCHEIBLE, S. The (Un)expected
Effects of Applying Standard Cleansing Models to Human Ratings on
Compositionality. Proceedings of the 9th Workshop on Multiword
Expressions. Anais...Atlanta, Georgia, USA: Association
for Computational Linguistics, jun. 2013. Disponível em: <https://aclanthology.org/W13-1005>
ROMERA-PAREDES, B.; TORR, P. H. S. An embarrassingly simple
approach to zero-shot learning. (F. R. Bach, D. M. Blei,
Eds.)Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015.
Anais...: JMLR Workshop e Conference
Proceedings.JMLR.org, 2015. Disponível em: <http://proceedings.mlr.press/v37/romera-paredes15.html>
RONCARATI, C. As cadeias do texto: construindo
sentidos. [s.l.] Parábola, 2010.
ROSA, G. M. et al. Yes, bm25
is a strong baseline for legal case retrieval. arXiv
preprint arXiv:2105.05686, b2021.
ROSA, G. M. et al. A
cost-benefit analysis of cross-lingual transfer methods.
arXiv preprint arXiv:2105.06813, a2021.
ROSÉN, V. et al. MWEs in Treebanks: From Survey to
Guidelines. Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16).
Anais...Portorož, Slovenia: European
Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1368>
ROSSANO, F. Gaze in
conversation. The handbook of conversation
analysis, p. 308–329, 2012.
ROSSI, D. et al. Identifying pedagogical intervention in
MOOCs learning processes: a conversational agent
proposal. Anais do XXXII Simpósio Brasileiro de Informática na
Educação. Anais...Porto Alegre, RS, Brasil: SBC, 2021.
Disponível em: <https://sol.sbc.org.br/index.php/sbie/article/view/18112>
ROTH, D.; YIH, W. Global inference for entity and relation
identification via a linear programming formulation.
Introduction to statistical relational learning, p.
553–580, 2007.
ROTHE, S.; NARAYAN, S.; SEVERYN, A. Leveraging Pre-trained
Checkpoints for Sequence Generation Tasks. Transactions of
the Association for Computational Linguistics, v. 8, p.
264–280, 2020.
RUANE, E.; BIRHANE, A.; VENTRESQUE, A. Conversational
AI: Social and Ethical Considerations. AICS.
Anais...2019. Disponível em: <https://ceur-ws.org/Vol-2563/aics_12.pdf>
RUBIN, V. L. TALIP Perspectives, Guest Editorial Commentary: Pragmatic
and Cultural Considerations for Deception Detection in Asian Languages.
v. 13, n. 2, p. 10:1–10:8, 2014.
RUBIN, V. L.; CHEN, Y.; CONROY, N. J. Deception detection for news:
Three types of fakes. Proceedings of the Association for
Information Science and Technology, v. 52, n. 1, p. 1–4, 2015.
RUBIN, V. L.; CONROY, N. J. Challenges in automated deception detection
in computer-mediated communication. Proceedings of the American
Society for Information Science and Technology, v. 48, n. 1, p.
1–4, 2011.
RUITER, J. P. DE. Turn-Taking.
Em: The Oxford Handbook of Experimental Semantics and
Pragmatics. [s.l.] Oxford University Press, 2019.
RUPPENHOFER, J. et al. FrameNet
II: Extended theory and practice. [s.l: s.n.].
RUSSEL, S. Human Compatible Artificial Intelligence and the
Problem of Control. [s.l.] Penguin Books, 2019.
RUSSELL, M. A. Mineração de Dados da Web Social.
Primeira edição ed. São Paulo: O’Reilly Novatec, 2011.
RUSSELL-ROSE, T.; CHAMBERLAIN, J.; AZZOPARDI, L. Information retrieval
in the workplace: A comparison of professional search practices.
Information Processing & Management, v. 54, n. 6,
p. 1042–1057, 2018.
SACKS, H.; SCHEGLOFF, E. A.; JEFFERSON, G. A simplest
systematics for the organization of turn taking for conversation.
Em: Studies in the organization of conversational
interaction. [s.l.] Elsevier, 1978. p. 7–55.
SACRAMENTO, A. DA S. B.; SOUZA, M. Joint Event Extraction with
Contextualized Word Embeddings for the Portuguese Language.
Brazilian Conference on Intelligent Systems.
Anais...Springer, 2021.
SADOCK, J. Speech
acts. Em: The handbook of pragmatics. [s.l.] Wiley
Online Library, 2006. p. 53–73.
SAEKI, T. et al. Virtuoso: Massive Multilingual Speech-Text
Joint Semi-Supervised Learning for Text-To-Speech., 2023.
Disponível em: <https://arxiv.org/abs/2210.15447>
SAG, I. A. et al. Multiword Expressions: A Pain in the Neck for
NLP. Conference on Intelligent Text Processing and
Computational Linguistics. Anais...2002. Disponível em:
<https://api.semanticscholar.org/CorpusID:1826481>
SAGER, N. Natural language information formatting: the automatic
conversion of texts to a structured data base. Em: Advances in
computers. [s.l.] Elsevier, 1978. v. 17p. 89–162.
SAGER, N.; FRIEDMAN, C.; LYMAN, M. S. Medical language
processing: computer management of narrative data. [s.l.]
Addison-Wesley Longman Publishing Co., Inc., 1987.
SAI, A. B.; MOHANKUMAR, A. K.; KHAPRA, M. M. A Survey of Evaluation Metrics
Used for NLG Systems. ACM Comput.
Surv., v. 55, n. 2, p. 26:1–26:39, 2023.
SAKIYAMA, K. M. Geração
Automática de Verbetações para
Recuperação de
Informações no Domı́nio
Jurı́dico Brasileiro. mathesis—[s.l.] Instituto de
Ciências Matemáticas e de Computação - Universidade de São
Paulo, 2023.
SALESKY, E. et al. The multilingual tedx corpus for speech recognition
and translation. arXiv preprint arXiv:2102.01757, 2021.
SALMINEN, J. et al. Creating and
detecting fake reviews of online products. Journal of
Retailing and Consumer Services, v. 64, p. 102771, 2022.
SALOMÃO, M. M. M. FrameNet Brasil: A work in progress.
Calidoscópio, v. 7, p. 171–182, 2009.
SALTON, G.; ALLAN, J. Text
retrieval using the vector processing model. dez. 1994.
SALTON, G.; MCGILL, M. J. Introduction to Modern Information
Retrieval. [s.l.] McGraw-Hill, 1983.
SALVI, C. et al. Going Viral: How Fear,
Socio-Cognitive Polarization and Problem-Solving Influence Fake News
Detection and Proliferation During COVID-19 Pandemic.
Frontiers in Communication, v. 5, p. 127, 2021.
SAMY, D. Reconocimiento
y clasificación de entidades nombradas en textos legalesen
español. Procesamiento del lenguaje
natural, v. 67, p. 103–114, 2021.
SANCHES, M. F. et al. Textual Datasets For
Portuguese-Brazilian Language Models.
Anais do IV Dataset Showcase Workshop. Anais...SBC,
2022. Disponível em: <https://doi.org/10.5753/dsw.2022.224294>
SANDERSON, M. et al. Test collection based evaluation of information
retrieval systems. Foundations and Trends in
Information Retrieval, v. 4, n. 4, p. 247–375, 2010.
SANG, E. F. T. K. Introduction to the CoNLL-2002 Shared
Task: Language-Independent Named Entity Recognition.
Proceedings of CoNLL-2002. Anais...Taipei, Taiwan:
2002. Disponível em: <https://aclanthology.org/W02-2024/>
SANG, E. F. T. K.; DE MEULDER, F. Introduction to the
CoNLL-2003 Shared Task: Language-Independent
Named Entity Recognition. Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL
2003. Anais...2003. Disponível em: <https://aclanthology.org/W03-0419>
SANH, V. et al. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, v. abs/1910.01108, 2019.
SANSONE, C.; SPERLÍ, G. Legal Information
Retrieval systems: State-of-the-art and open issues.
Information Systems, v. 106, p. 101967, 2022.
SANTANA, B. P. Morfologia ornamental: as
vogais temáticas do português brasileiro o
Unitex-PB. mathesis—Curitiba, PR: Universidade
Federal do Paraná, Setor de Ciências Humanas, Programa de Pós-Graduação
em Letras, 2019.
SANTANA, B. S. A computational-linguistic-based approach to
support the analysis of the discursive configuration of violence on
social media. tese de doutorado—[s.l.] Universidade Federal do
Rio Grande do Sul, 2023.
SANTHANAM, S.; SHAIKH, S. A survey of natural language generation
techniques with a focus on dialogue systems-past, present and future
directions. arXiv preprint arXiv:1906.00500, 2019.
SANTOS, A. A. et al. O teste de Cloze na
avaliação da compreensão em
leitura. Psicologia: reflexão e
crı́tica, v. 15, p. 549–560, 2002.
SANTOS, C. N. DOS; GUIMARÃES, V. Boosting Named Entity
Recognition with Neural Character Embeddings. (X. Duan et al.,
Eds.)Proceedings of the 5th Named Entity Workshop.
Anais...Association for Computational Linguistics,
2015.
SANTOS, D. O projecto Processamento
Computacional do Português:
Balanço e perspectivas. (M. das Graças Volpe
Nunes, Ed.)V Encontro para o processamento
computacional da língua portuguesa escrita e falada (PROPOR
2000). Anais...São Paulo: ICMC/USP, 2000. Disponível
em: <https://www.linguateca.pt/Diana/download/SantosPROPOR2000.pdf>
SANTOS, D. Evaluation in natural language
processing., a2007. Disponível em: <http://www.linguateca.pt/Diana/download/EvaluationESSLLI07.pdf>
SANTOS, D. Avaliação
conjunta. Em: SANTOS, D. (Ed.). Avaliação
conjunta: um novo paradigma no processamento computacional da língua
portuguesa. Lisboa, Portugal: IST Press, 2007c. p. 1–12.
SANTOS, D. (ED.). Avaliação conjunta: um novo
paradigma no processamento computacional da língua portuguesa.
Lisboa, Portugal: IST Press, 2007b.
SANTOS, D. Caminhos
percorridos no mapa da portuguesificação: A
Linguateca em perspectiva.
Linguamática, v. 1, n. 1, p. 25–59, 2009.
SANTOS, D. et al. GikiP at
GeoCLEF 2008: Joining
GIR and QA forces for querying
Wikipedia. Em: PETERS, C. et al. (Eds.).
Evaluating Systems for
Multilingual and Multimodal
Information Access 9th Workshop
of the Cross-Language Evaluation
Forum, CLEF 2008, Aarhus,
Denmark, September 17-19, 2008,
Revised Selected Papers.
[s.l.] Springer, 2009. p. 894–905.
SANTOS, D. et al. GikiCLEF:
Crosscultural issues in multilingual information
access. (N. Calzolari et al., Eds.)Proceedings of
the International Conference on
Language Resources and Evaluation
(LREC 2010). Anais...Valletta, Malta:
European Language Resources Association, 2010. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2010/pdf/272_Paper.pdf>
SANTOS, D. et al. (EDS.). Edição
especial Págico - português mágico. [s.l.] Linguamática,
2012. v. 4
SANTOS, D. Evaluation contests in Portuguese: Linguateca’s
contribution., 2021. Disponível em: <https://www.linguateca.pt/Diana/download/AvalConjLRE16May2021.pdf>
SANTOS, D. et al. DIP
- Desafio de Identificação de
Personagens: objectivo, organização, recursos e
resultados. Linguamática, v. 15, n. 1,
p. 3–30, a2023.
SANTOS, D.; CABRAL, L. M. GikiCLEF :
Expectations and lessons learned. Em: PETERS, C. et al.
(Eds.). Multilingual Information
Access Evaluation, VOL
I. [s.l.] Springer, 2010. p. 212–222.
SANTOS, D.; CARDOSO, N. Breve introdução ao HAREM. (D.
Santos, N. Cardoso, Eds.)Reconhecimento de entidades mencionadas em
português: Documentação e actas do HAREM, a primeira
avaliação conjunta na área.
Anais...Linguateca, a2007. Disponível em: <http://www.linguateca.pt/LivroHAREM/>
SANTOS, D.; CARDOSO, N. A golden resource for named
entity recognition in portuguese. Proceeding of the 7th
International conference on the computational processing of portuguese.
Anais...Springer, b2007.
SANTOS, D.; CARDOSO, N.; SECO, N. Avaliação no HAREM: Métodos e
medidas. (D. Santos, N. Cardoso, Eds.)Reconhecimento de
entidades mencionadas em português: Documentação e actas do HAREM, a
primeira avaliação conjunta na área.
Anais...Linguateca, 2007.
SANTOS, D.; COSTA, L.; ROCHA, P. Cooperatively
evaluating Portuguese morphology. (J. Baptista et
al., Eds.)Computational Processing of the
Portuguese Language: 6th
International Workshop, PROPOR
2003. Faro, Portugal, June 2003
(PROPOR 2003). Anais...Berlin/Heidelberg:
Springer Verlag, 2003.
SANTOS, D.; ROCHA, P. AvalON: uma
iniciativa de avaliação conjunta para o português. (A. Mendes,
T. Freitas, Eds.)Actas do XVIII
Encontro Nacional da Associação
Portuguesa de Linguística (APL
2002). Anais...Lisboa: APL, 2003. Disponível em: <https://www.linguateca.pt/Diana/download/SantosRochaAPL2002.pdf>
SANTOS, D.; ROCHA, P. The key to the first CLEF
with Portuguese: Topics, questions and answers in
CHAVE. Workshop of the Cross-Language Evaluation
Forum for European Languages. Anais...2004.
SANTOS, F. R. DOS et al. EDUARDO - A Semantic Model
for Automatic Content Integration with an Conversational Intelligent
Agent. Anais do XXII Simpósio Brasileiro de Sistemas Multimídia
e Web. Anais...Porto Alegre, RS, Brasil: SBC, 2016.
Disponível em: <https://sol.sbc.org.br/index.php/webmedia/article/view/5372>
SANTOS, F.; FREITAS, T. CORP-ORAL:
Spontaneous Speech Corpus for European
Portuguese. Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08).
Anais...Marrakech, Morocco: European Language Resources
Association (ELRA), 2008. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2008/pdf/331_paper.pdf>
SANTOS, H. D. P. DOS et al. Fall Detection in EHR
using Word Embeddings and Deep Learning. 2019 IEEE 19th
International Conference on Bioinformatics and Bioengineering (BIBE).
Anais...a2019.
SANTOS, H. D. P. D.; ULBRICH, A. H. D. P. S.; VIEIRA, R.
Evaluation of a Prescription Outlier Detection System in
Hospital’s Pharmacy Services. 2021 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM).
Anais...IEEE, a2021.
SANTOS, J. et al. Assessing the Impact of Contextual Embeddings
for Portuguese Named Entity Recognition. Proceedings of the 8th
Brazilian Conference on Intelligent Systems.
Anais...b2019.
SANTOS, J. et al. De-identification of clinical notes using
contextualized language models and a token classifier.
Brazilian Conference on Intelligent Systems.
Anais...Springer, b2021.
SANTOS, J. et al. Named entity recognition specialised for Portuguese
18th-century History research. Proceedings of the International
Conference on the Computational treatment of Portuguese,
PROPOR, a2024.
SANTOS, J.; ALVES, A.; GONÇALO OLIVEIRA, H. Leveraging on
Semantic Textual Similarity for developing a Portuguese dialogue
system. International Conference on Computational Processing of
the Portuguese Language. Anais...Springer, a2020.
Disponível em: <https://doi.org/10.1007/978-3-030-41505-1_13>
SANTOS, J.; SANTOS, H. D. P. DOS; VIEIRA, R. Fall Detection in
Clinical Notes using Language Models and Token Classifier. (A.
G. S. de Herrera et al., Eds.)Proceedings of the 33rd IEEE
International Symposium on Computer-Based Medical Systems.
Anais...b2020.
SANTOS, L. B. DOS et al. A Lightweight Regression Method to Infer
Psycholinguistic Properties for Brazilian Portuguese.
International Conference on Text, Speech, and Dialogue,
p. 281–289, 2017.
SANTOS, R. et al. Measuring the Impact of Readability Features
in Fake News Detection. (N. Calzolari et al., Eds.)Proceedings
of the Twelfth Language Resources and Evaluation Conference.
Anais...Marseille, France: European Language Resources
Association, c2020. Disponível em: <https://aclanthology.org/2020.lrec-1.176>
SANTOS, R. L. DE S. Detecção
Automática de Notícias Falsas em Português. Ph.D.
Thesis—São Carlos, Brazil: Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, 2022.
SANTOS, R. L. DE S.; PARDO, T. A. S. Fact-Checking for
Portuguese: Knowledge Graph and Google Search-Based Methods.
Proceedings of the 14th International Conference on the Computational
Processing of Portuguese (PROPOR). Anais...: Lecture
Notes em Artificial Intelligence (LNAI).Évora, Portugal: Springer, 2020.
SANTOS, R. L. DE S.; PARDO, T. A. S. Structural Characterization
and Graph-based Detection of Fake News in Portuguese.
Proceedings of the XIV Symposium in Information and Human Language
(STIL). Anais...2021.
SANTOS SILVA, D. DOS; PARABONI, I. Generating Spatial
Referring Expressions in Interactive 3D Worlds.
Spatial Cognition & Computation, v. 15, n. 03, p.
186–225, 2015.
SANTOS, V. G. et al. CORAA NURC-SP
Minimal Corpus: a manually annotated corpus of
Brazilian Portuguese spontaneous
speech. Proc. IberSPEECH 2022.
Anais...2022.
SANTOS, W. R. DOS; FUNABASHI, A. M. M.; PARABONI, I.
Searching Brazilian Twitter for signs of mental health
issues. 12th International Conference on Language
Resources and Evaluation (LREC-2020).
Anais...Marseille, France: ELRA, d2020.
SANTOS, W. R. DOS; OLIVEIRA, R. L. DE; PARABONI, I. SetembroBR: a
social media corpus for depression and anxiety disorder
prediction. Language Resources and
Evaluation, v. 58, n. 1, p. 273–300, b2024.
SANTOS, W. R. DOS; PARABONI, I. Predição de transtorno
depressivo em redes sociais: BERT supervisionado ou ChatGPT
zero-shot? XIV Simpósio Brasileiro de Tecnologia
da Informação e da Linguagem Humana (STIL-2023).
Anais...Porto Alegre, Brasil: SBC, 2023.
Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25433>
SANTOS, W. R. DOS; PARABONI, I. Prompt-based mental health
screening from social media text. Brazilian
Workshop on Social Network Analysis and Mining (BraSNAM-2024).
Anais...Brasilia, DF: 2024.
SANTOS, W. R. DOS; YOON, S.; PARABONI, I. Mental Health
Prediction from Social Media Text Using Mixture of Experts.
IEEE Latin America Transactions, v. 21, n.
6, p. 723–729, b2023.
SAQUETE, E. et al. Fighting Post-truth
using Natural Language Processing: A Review and Open Challenges.
Expert Systems with Applications, v. 141, p. 112943,
2019.
SARAH HICKEY. Nimdzi 100 - Language
Services Industry Market
Report 2020.pdf. [s.l: s.n.].
SARDINHA, T. B. Lingüística de
Corpus: histórico e problemática. DELTA: Documentação de
Estudos em Lingüística Teórica e Aplicada, v. 16, n. 2, p.
323–367, 2000.
SARMENTO, C. DA S. Da Abordagem do Léxico em Livros
Didáticos de Língua Portuguesa: os Anos Finais
do Ensino Fundamental. mathesis—Brasília: UnB, 2019.
SARMENTO, L.; PINTO, A. S.; CABRAL, L. REPENTINO – a wide-scope
gazetteer for entity recognition in portuguese. Proceedings of
International Workshop on Computational Processing of the Portuguese
Language. Anais...Springer, 2006.
SARTORI, L.; THEODOROU, A. A Sociotechnical
Perspective for the Future of AI: Narratives, Inequalities, and Human
Control. Ethics and Inf. Technol., v. 24, n. 1,
mar. 2022.
SAURÍ, R. et al. TimeML Annotation Guidelines, Version
1.2.1., 2006. Disponível em: <https://nilsreiter.de/assets/2017-10-01-howto-annotation/timeml-1.2.1.pdf>
SAVARY, A. et al. Literal
Occurrences of Multiword Expressions: Rare Birds That Cause a
Stir. The Prague Bulletin of Mathematical
Linguistics, v. 112, p. 5–54, 2019b2019b.
SAVARY, A. et al. PARSEME – parsing and multiword
Expressions within a European multilingual
network. Proc. of LTC 2015.
Anais...Poznań: 2015.
SAVARY, A. et al. The PARSEME Shared Task on
Automatic Identification of Verbal Multiword Expressions.
Proceedings of the 13th Workshop on MWEs.
Anais...Valencia, Spain: ACL, 2017.
SAVARY, A. et al. PARSEME
multilingual corpus of verbal multiword expressions. Em:
MARKANTONATOU, S. et al. (Eds.). Multiword expressions at length
and in depth: Extended papers from the MWE 2017 workshop.
Phraseology e Multiword Expressions. Berlin, Germany: Language Science
Press, 2018. v. 2.
SAVARY, A. et al. Object-oriented
lexical encoding of multiword expressions: Short and sweet.
Lexique, n. 27, p. 87–120, 2020.
SAVARY, A. et al. PARSEME
Meets Universal Dependencies: Getting on the Same Page in Representing
Multiword Expressions. Northern European Journal of Language
Technology, v. 9, p. 14, a2023.
SAVARY, A. et al. PARSEME corpus release
1.3. Proceedings of the 19th Workshop on Multiword Expressions
(MWE 2023). Anais...Dubrovnik, Croatia: Association for
Computational Linguistics, b2023.
SAVARY, A.; CORDEIRO, S.; RAMISCH, C. Without lexicons,
multiword expression identification will never fly: A position
statement. Proceedings of the Joint Workshop on Multiword
Expressions and WordNet (MWE-WN 2019).
Anais...Florence, Italy: Association for Computational
Linguistics, 2019a2019a. Disponível em: <https://aclanthology.org/W19-5110>
SCAO, T. L. et al. BLOOM:
A 176B-Parameter Open-Access Multilingual Language
Model. CoRR, v. abs/2211.05100, 2022.
SCARTON, C. et al. Simplifica: a tool for authoring simplified texts in
Brazilian Portuguese guided by readability assessments.
Proceedings of the 2010 Conference of the North American Chapter
of the Association for Computational Linguistics - Human Language
Technologies, p. 41–44, 2010.
SCARTON, C. E.; ALUISIO, S. M. Towards a cross-linguistic
VerbNet-style lexicon for Brazilian portuguese.
Workshop on Creating Cross-language Resources for Disconnected Languages
and Styles - CREDISLAS. Anais...ELRA, 2012.
SCARTON, C. E.; ALUÍSIO, S. M. Análise
da Inteligibilidade de textos via ferramentas de
Processamento de Língua
Natural: adaptando as métricas do
Coh-Metrix para o
Português.
Linguamática, v. 2, n. 1, p. 45–61, 2010.
SCARTON, C.; SPECIA, L. Learning Simplifications for Specific Target
Audiences. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Short Papers), p.
712–718, 2018.
SCHANK, R. C. et al. MARGIE: Memory Analysis Response
Generation, and Inference on English. IJCAI.
Anais...1973.
SCHEGLOFF, E. A. Overlapping talk and
the organization of turn-taking for conversation. Language
in society, v. 29, n. 1, p. 1–63, 2000.
SCHEGLOFF, E. A.; JEFFERSON, G.; SACKS, H. The preference for self-correction
in the organization of repair in conversation.
Language, v. 53, n. 2, p. 361–382, 1977.
SCHEGLOFF, E. A.; SACKS, H. Opening up
closings. Semiotica, 1973.
SCHICK, T.; SCHÜTZE, H. Exploiting Cloze-Questions for Few-Shot
Text Classification and Natural Language Inference. (P. Merlo,
J. Tiedemann, R. Tsarfaty, Eds.)Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics:
Main Volume, EACL 2021, Online, April 19 - 23, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.eacl-main.20>
SCHLANGEN, D. Language tasks and
language games: On methodology in current natural language processing
research. arXiv preprint arXiv:1908.10747, 2019.
SCHLANGEN, D. Targeting the Benchmark: On Methodology in Current
Natural Language Processing Research. Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Anais...Online: Association
for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-short.85>
SCHLANGEN, D. Norm Participation Grounds Language.
Proceedings of the 2022 CLASP Conference on (Dis)embodiment.
Anais...Gothenburg, Sweden: Association for
Computational Linguistics, set. 2022. Disponível em: <https://aclanthology.org/2022.clasp-1.7>
SCHLANGEN, D. What A Situated Language-Using Agent Must be Able
to Do: A Top-Down Analysis., b2023. Disponível em: <https://arxiv.org/abs/2302.08590>
SCHLANGEN, D. Dialogue games
for benchmarking language understanding: Motivation, taxonomy,
strategy. arXiv preprint arXiv:2304.07007, a2023.
SCHLANGEN, D. On General Language Understanding. (H.
Bouamor, J. Pino, K. Bali, Eds.)Findings of the Association for
Computational Linguistics: EMNLP 2023.
Anais...Singapore: Association for Computational
Linguistics, dez. c2023. Disponível em: <https://aclanthology.org/2023.findings-emnlp.591>
SCHLANGEN, D.; SKANTZE, G. A general, abstract model
of incremental dialogue processing. Dialogue &
Discourse, v. 2, n. 1, p. 83–111, 2011.
SCHMID, H. Part-of-Speech
Tagging with Neural
Networks., 1994. Disponível em: <https://arxiv.org/abs/cmp-lg/9410018>
SCHMIDHUBER, J.; HEIL, S. Sequential neural text
compression. IEEE Transactions on Neural Networks,
v. 7, n. 1, p. 142–146, 1996.
SCHMITZ, M. et al. Open language learning for information
extraction. Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. Anais...: EMNLP-CoNLL
’12.Stroudsburg, PA, USA: Association for Computational Linguistics;
Association for Computational Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2390948.2391009>
SCHNEIDER, E. T. R. et al. BioBERTpt -
A Portuguese Neural Language Model for Clinical Named
Entity Recognition. (A. Rumshisky et al., Eds.)Proceedings of
the 3rd Clinical Natural Language Processing Workshop.
Anais...Online: Association for Computational
Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.clinicalnlp-1.7>
SCHNEIDER, E. T. R. et al. A GPT-2 Language
Model for Biomedical Texts in Portuguese. 2021 IEEE 34th
International Symposium on Computer-Based Medical Systems (CBMS).
Anais...2021.
SCHNEIDER, E. T. R. et al. CardioBERTpt:
Transformer-based Models for Cardiology Language Representation in
Portuguese. 2023 IEEE 36th International Symposium on
Computer-Based Medical Systems (CBMS). Anais...2023.
SCHNEIDER, N. et al. SemEval-2016 Task
10: Detecting Minimal Semantic Units and their Meanings
(DiMSUM). Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016). Anais...San
Diego, California: Association for Computational Linguistics, 2016.
Disponível em: <https://aclanthology.org/S16-1084>
SCHNEIDER, N.; SMITH, N. A. A Corpus and Model Integrating
Multiword Expressions and Supersenses. Proceedings of the 2015
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Anais...Denver, Colorado: Association for Computational
Linguistics, 2015. Disponível em: <https://www.aclweb.org/anthology/N15-1177>
SCHONE, P.; JURAFSKY, D. Is Knowledge-Free Induction of
Multiword Unit Dictionary Headwords a Solved Problem?
(L. Lee, D. Harman, Eds.)Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing.
Anais...2001.
SCHRAAGEN, M. et al. Evaluation of Named
Entity Recognition in Dutch online criminal complaints.
Computational Linguistics in the Netherlands Journal,
v. 7, p. 3–16, 2017.
SCHRIML, L. M. et al. Disease Ontology: a backbone for disease semantic
integration. Nucleic acids research, v. 40, n. D1, p.
D940–D946, 2012.
SCHRÖDER, U. The
interplay of verbal, vocal, and visual cues in the co-construction of
the experience of alterity in exchange students’ talk.
Journal of Pragmatics, v. 81, p. 21–35, 2015.
SCHUBERT, G.; FREITAS, L. A. DE. A Construção de um Corpus para
Detecção de Ironia e Sarcasmo em Português. Anais do XVII
Encontro Nacional de Inteligência Artificial e Computacional.
Anais...2020.
SCHULTE IM WALDE, S. et al.
GhoSt-NN: A
Representative Gold Standard of German Noun-Noun
Compounds. Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16).
Anais...Portorož, Slovenia: European
Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1362>
SCHUSTER, M.; NAKAJIMA, K. Japanese and Korean
voice search. 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
Anais...2012.
SCHUSTER, M.; PALIWAL, K. K. Bidirectional recurrent neural
networks. IEEE transactions on Signal Processing,
v. 45, n. 11, p. 2673–2681, 1997.
SEARA, I. Estudo Estatístico dos Fonemas do
Português Brasileiro Falado na Capital de Santa Catarina
para Elaboração de Frases Foneticamente
Balanceadas. tese de doutorado—[s.l.]
Dissertação de Mestrado, Universidade Federal
de Santa Catarina …, 1994.
SECO, N. et al. A Complex
Evaluation Architecture for
HAREM. (R. Vieira et al.,
Eds.)Computational Processing of the
Portuguese Language: 7th
International Workshop, PROPOR
2006. Anais...Springer, 2006.
SEKINE, S. Description of the Japanese NE system used for
MET-2. Seventh Message Understanding Conference (MUC-7):
Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1,
1998. Anais...1998.
SELLAM, T.; DAS, D.; PARIKH, A. P. BLEURT: Learning
Robust Metrics for Text Generation. Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020.
Anais...2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.704>
SELLARS, W. Inference and
Meaning. Mind, v. 62, n. 247, p. 313–338, 1953.
SEMENOV, A. et al. Discerning Depression Propensity Among
Participants of Suicide and Depression-Related Groups of
Vk.com. Analysis of Images, Social Networks and Texts.
Anais...Cham: Springer International Publishing, 2015.
SENA, C. F. L.; CLARO, D. B. InferPortOIE: A Portuguese Open Information
Extraction system with inferences. Natural Language
Engineering, v. 25, n. 2, p. 287–306, 2019.
SENA, C. F. L.; CLARO, D. B. PragmaticOIE: a
pragmatic open information extraction for Portuguese language.
Knowl. Inf. Syst., v. 62, n. 9, p. 3811–3836, 2020.
SENA, C. F. L.; GLAUBER, R.; CLARO, D. B. Inference Approach to
Enhance a Portuguese Open Information Extraction.
Proceedings of the 19th International Conference on Enterprise
Information Systems - Volume 3: ICEIS. Anais...INSTICC;
SciTePress, 2017.
SENNRICH, R.; HADDOW, B.; BIRCH, A. Improving Neural
Machine Translation Models with Monolingual Data.
Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL 2016).
Anais...a2016. Disponível em: <https://arxiv.org/abs/1511.06709>
SENNRICH, R.; HADDOW, B.; BIRCH, A. Neural Machine Translation
of Rare Words with Subword Units. Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Anais...Berlin, Germany: Association
for Computational Linguistics, ago. b2016. Disponível em: <https://aclanthology.org/P16-1162>
SENO, E. R. M. RHeSumaRST: um sumarizador
automático de estruturas RST. mathesis—[s.l.]
Universidade Federal de São Carlos, 2005.
SERBAN, I. et al. Building end-to-end dialogue systems using
generative hierarchical neural network models. Proceedings of
the AAAI conference on artificial intelligence.
Anais...2016. Disponível em: <https://doi.org/10.48550/arXiv.1507.04808>
SERBAN, I. V. et al. A
Survey of Available Corpora For Building Data-Driven Dialogue Systems:
The Journal Version. Dialogue & Discourse, v.
9, n. 1, p. 1–49, 2018.
SERETAN, V. Syntax-Based Collocation Extraction. 1st.
ed. Dordrecht, Netherlands: springer, 2011. v. 44
SERRA, C. R. Realização e percepção de fronteiras prosódicas no
português do Brasil: fala espontânea e leitura.
tese de doutorado—Rio de Janeiro: Universidade Federal do Rio de
Janeiro, 2009.
SHAMMA, S. A. et al. Information
Extraction from Arabic Law Documents. 2020 IEEE 14th
International Conference on Application of Information and Communication
Technologies (AICT). Anais...2020.
SHANNON, C. E. Prediction and entropy of printed English. Bell
System Technical Journal, v. 30, n. 1, p. 50–64, 1951.
SHAOWEI, Z. et al. Survey of Supervised Joint Entity Relation Extraction
Methods. Journal of Frontiers of Computer Science &
Technology, v. 16, n. 4, 2022.
SHAPIRO, S. C. SNePS: A Logic for
Natural Language Understanding and Commonsense Reasoning. Em:
Natural Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language. Cambridge,
MA, USA: MIT Press, 2000. p. 175–195.
SHARDLOW, M. A Survey of
Automated Text Simplification. International Journal of
Advanced Computer Science and Applications(IJACSA), Special Issue on
Natural Language Processing 2014, v. 4, n. 1, 2014.
SHEIKHALISHAHI, S. et al. Natural Language Processing of Clinical Notes
on Chronic Diseases: Systematic Review. JMIR Med
Inform, v. 7, n. 2, p. e12239, abr. 2019.
SHEN, G. et al. Depression Detection via
Harvesting Social Media: A Multimodal Dictionary Learning
Solution. 26th International Joint Conference on Artificial
Intelligence, IJCAI-17. Anais...2017.
SHEN, J. et al. Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions. 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
Anais...IEEE, a2018.
SHEN, J. H.; RUDZICZ, F. Detecting Anxiety on
Reddit. Fourth Workshop on Computational
Linguistics and Clinical Psychology: From Linguistic Signal to Clinical
Reality. Anais...Vancouver, Canada: Association for
Computational Linguistics, 2017.
SHEN, T. et al. Cross-Domain Depression
Detection via Harvesting Social Media. Twenty-Seventh
International Joint Conference on Artificial Intelligence,
IJCAI-18. Anais...International Joint
Conferences on Artificial Intelligence Organization, b2018.
SHERMIS, M. D.; BURSTEIN, J. Handbook of Automated Essay
Evaluation: Current Applications and New Directions. [s.l.]
Routledge/Taylor & Francis Group, 2013.
SHI, Z.; LIPANI, A. Don’t Stop Pretraining? Make Prompt-based
Fine-tuning Powerful Learner., 2023. Disponível em: <https://arxiv.org/abs/2305.01711>
SHICKEL, B. et al. Deep EHR: A Survey of Recent Advances in
Deep Learning Techniques for Electronic Health Record (EHR)
Analysis. IEEE J Biomed Health Inform, v. 22, n. 5, p.
1589–1604, out. 2017.
SHIMANAKA, H.; KAJIWARA, T.; KOMACHI, M. Machine Translation Evaluation
with BERT Regressor. arXiv, v.
abs/1907.12679, 2019.
SHIMORINA, A.; BELZ, A. The Human Evaluation Datasheet: A
Template for Recording Details of Human Evaluation Experiments in
NLP. Proceedings of the 2nd Workshop on Human
Evaluation of NLP Systems (HumEval). Anais...Dublin,
Ireland: Association for Computational Linguistics, 2022. Disponível em:
<https://aclanthology.org/2022.humeval-1.6>
SHMUELI, B. et al. Beyond Fair Pay: Ethical Implications of
NLP Crowdsourcing. Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.
Anais...Online: Association for Computational
Linguistics, jun. 2021. Disponível em: <https://aclanthology.org/2021.naacl-main.295>
SHRESTHA, A.; SPEZZANO, F. Detecting Depressed Users
in Online Forums. 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM). Anais...2019.
SHRIBERG, E. Preliminaries to a theory of speech
disfluencies. tese de doutorado—[s.l.] University of California
at Berkele, 1994.
SHRIBERG, E. To
“errrr” is human: ecology and acoustics of speech
disfluencies. Journal of the International Phonetic
Association, v. 31, n. 1, p. 153–169, 2001.
SHTERIONOV, D. et al. Human versus Automatic Quality Evaluation of
NMT and PBSMT. Machine
Translation, v. 32, n. 3, p. 217–235, 2018.
SI, S. et al. Sentence
Similarity Computation in Question Answering Robot. Journal
of Physics: Conference Series, v. 1237, n. 2, p. 022093, jun.
2019.
SIDDHARTHAN, A. Syntactic Simplifcation and Text Cohesion.
Research on Language and Computation - Springer, 2006.
SIDDHI, D.; VERGHESE, J. M.; BHAVIK, D. Survey on various methods of
text to speech synthesis. International Journal of Computer
Applications, v. 165, n. 6, 2017.
SIDNELL, J. Turn-continuation by
self and by other. Discourse Processes, v. 49, n.
3-4, p. 314–337, 2012.
SIDNER, C. A progress report on the discourse and reference
components of PAL. [s.l.] Massachusetts Institute of Tech
Cambridge Artificial Intelligence LAB, 1978.
SILVA, A. P. DA et al. Risco de queda relacionado a medicamentos em
hospitais: abordagem de aprendizado de máquina.
Acta Paulista de Enfermagem, v. 36, a2023.
SILVA, E. DA; LATERZA, J.; FALEIROS, T. New State-of-the-Art for
Question Answering on Portuguese SQuAD v1.1. Anais do X
Symposium on Knowledge Discovery, Mining and Learning.
Anais...Porto Alegre, RS, Brasil: SBC, a2022.
Disponível em: <https://sol.sbc.org.br/index.php/kdmile/article/view/24974>
SILVA, E.; PARDO, T.; ROMAN, N. Etiquetagem morfossintática
multigênero para o português do Brasil segundo o modelo Üniversal
Dependencies̈. Anais do XIV Simpósio Brasileiro de Tecnologia da
Informação e da Linguagem Humana. Anais...Porto Alegre,
RS, Brasil: SBC, b2023. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25438>
SILVA, F. L. V. DA et al. ABSAPT
2022 at IberLEF: Overview of the Task on Aspect-Based Sentiment Analysis
in Portuguese. Procesamiento del Lenguaje Natural,
v. 69, p. 199–205, b2022.
SILVA, F. R. A. DA. Detecção de Ironia e Sarcasmo em Língua
Portuguesa: uma abordagem utilizando Deep Learning. https://github.com/fabio-ricardo/deteccao-ironia, 2018.
SILVA, I. A. L. DA et al. Translation, post-editing and directionality.
Translation in transition: Between cognition, computing and
technology, p. 107–134, 2017.
SILVA, J. F. DA. Resolução de
correferência em múltiplos documentos
utilizando aprendizado não supervisionado.
Dissertação de Mestrado, Universidade de São Paulo, 2011.
SILVA, J. F. F. Estratégias para sumarização de
documentos. mathesis—[s.l.] (Mestrado em Engenharia
informática) - Faculdade de Ciências e Tecnologia da Universidade Nova
de Lisboa, 2022.
SILVA, M. J.; CARVALHO, P.; SARMENTO, L. Building a Sentiment
Lexicon for Social Judgement Mining. Proceedings of the 10th
International Conference on Computational Processing of the Portuguese
Language. Anais...2012.
SILVA, N. F. F. DA et al. Evaluating Topic
Models in Portuguese Political Comments About Bills from Brazil’s
Chamber of Deputies. (A. Britto, K. Valdivia Delgado,
Eds.)Intelligent Systems. Anais...Cham: Springer
International Publishing, 2021.
SILVA, N. L. DA; DI FELIPPO, A.
Descrição e Análise do
Fenômeno da Contradição para a
Sumarização Automática
Multidocumento. [s.l.] Série de
Relatórios Técnicos do Núcleo
Interinstitucional de Linguística Computacional, 2014.
SILVA, R. M. et al. Towards Automatically
Filtering Fake News in Portuguese. Expert Systems with
Applications, v. 146, p. 1–48, 2020.
SIMMONS, R.; SLOCUM, J. Generating English
Discourse from Semantic Networks. Commun. ACM, v.
15, n. 10, p. 891–905, out. 1972.
SIMÕES, A.; GUINOVART, X. G. Bootstrapping a Portuguese WordNet
from Galician, Spanish and English Wordnets. IberSPEECH
Conference. Anais...2014. Disponível em: <https://api.semanticscholar.org/CorpusID:10377782>
SINCLAIR, J. (ED.). Collins COBUILD Dictionary of
Phrasal Verbs. London, UK: Collins COBUILD, 1989.
SINGH, P. et al. Open Mind Common Sense: Knowledge Acquisition
from the General Public. (R. Meersman, Z. Tari, Eds.)On the
Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg,
2002.
SINGH, Y. B.; GOEL, S. A systematic literature review of speech emotion
recognition approaches. Neurocomputing, 2022.
SIQUEIRA, F. et al. Ulysses Tesemõ: a new
large corpus for Brazilian legal and governmental domain.
Language Resources and Evaluation, p. 1–20, jul. 2024.
SJÖHOLM, J. Probability as readability: A new machine learning
approach to readability assessment for written Swedish. [s.l.]
LiU Electronic Press, 2012.
SKANTZE, G. Error
Handling in Spoken Dialogue Systems: Managing Uncertainty, Grounding and
Miscommunication. tese de doutorado—[s.l.] KTH, 2007.
SKANTZE, G. Turn-taking in
conversational systems and human-robot interaction: a review.
Computer Speech & Language, v. 67, p. 101178, 2021.
SKANTZE, G.; DOĞRUÖZ, A. S. The Open-domain Paradox for
Chatbots: Common Ground as the Basis for Human-like Dialogue.
Proceedings of the 24th Meeting of the Special Interest Group on
Discourse and Dialogue. Anais...Prague, Czechia:
Association for Computational Linguistics, set. 2023. Disponível em:
<https://aclanthology.org/2023.sigdial-1.57>
SLEIMI, A. et al. An automated framework
for the extraction of semantic legal metadata from legal texts.
Empirical Software Engineering, v. 26, p. 1–50, 2021.
SMADJA, F. A. Retrieving Collocations from Text: Xtract.
cl, v. 19, n. 1, p. 143–177, 1993.
SMILEY, C. et al. When to Plummet and When to Soar: Corpus Based
Verb Selection for Natural Language Generation. Proceedings of
the 9th International Natural Language Generation conference.
Anais...: INLG’16.Edinburgh, UK: Association for
Computational Linguistics, 2016. Disponível em: <http://anthology.aclweb.org/W16-6606>
SMIRNOVA, A.; CUDRÉ-MAUROUX, P. Relation extraction using distant
supervision: A survey. ACM Computing Surveys (CSUR), v.
51, n. 5, p. 1–35, 2018.
SMITH, G.; RUSTAGI, I. Mitigating Bias in Artificial
Intelligence: An Equity Fluent Leadership Playbook. [s.l.]
Berkeley Haas Center for Equity, Gender; Leadership, 2020.
SMITH, K. S. On Integrating Discourse in Machine
Translation. Proceedings of the Third Workshop on
Discourse in Machine Translation. Anais...2017.
SMYWIŃSKI-POHL, A. et al. Automatic Extraction of
Amendments from Polish Statutory Law. Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Law.
Anais...: ICAIL ’21.New York, NY, USA: Association for
Computing Machinery, 2021.
SNOVER, M. G. et al. A Study of Translation Edit Rate with
Targeted Human Annotation. Proceedings of the 7th Conference of
the Association for Machine Translation in the Americas: Technical
Papers, AMTA 2006, Cambridge, Massachusetts, USA, August
8-12, 2006. Anais...2006. Disponível em: <https://aclanthology.org/2006.amta-papers.25/>
SOARES, M. O que é letramento? Presença Pedagógica Volume 2, n.
10, p. 15–25, 1996.
SOCHER, R. et al. Semantic compositionality through recursive
matrix-vector spaces. Proceedings of the 2012 joint conference
on empirical methods in natural language processing and computational
natural language learning. Anais...2012.
SODERLAND, S. et al. CRYSTAL inducing a conceptual
dictionary. Proceedings of the 14th international joint
conference on Artificial intelligence-Volume 2.
Anais...1995.
SØGAARD, A. et al. What’s in a p-value in
NLP? Proceedings of the Eighteenth Conference on
Computational Natural Language Learning. Anais...Ann
Arbor, Michigan: Association for Computational Linguistics, jun. 2014.
Disponível em: <https://aclanthology.org/W14-1601>
SOLORIO, T. MALINCHE: A NER system for Portuguese that reuses knowledge
from Spanish. Reconhecimento de entidades mencionadas em
português: Documentação e atas do
HAREM, a primeira avaliação conjunta na
área, Capı́tulo, v. 10, p. 123–136,
2007.
SONG, H. et al. Feature Attention Network: Interpretable
Depression Detection from Social Media. 32nd Pacific Asia
Conference on Language, Information and Computation.
Anais...Hong Kong: Association for Computational
Linguistics, 2018.
SOON, W. M.; NG, H. T.; LIM, C. Y. A Machine Learning
Approach to Coreference Resolution of Noun Phrases.
Computational Linguistics, v. 27, n. 4, p. 521–544,
2001.
SOUSA, A. et al. Cross-Lingual Annotation Projection for
Argument Mining in Portuguese. (G. Marreiros et al.,
Eds.)Progress in Artificial Intelligence.
Anais...Springer International Publishing, 2021.
SOUSA, A. G. DE et al. Using a Domain Ontology to Bridge the Gap
between User Intention and Expression in Natural Language
Queries. ICEIS (1). Anais...2020.
SOUSA, C. S. C.; ANDRADE, I. M.; ALMEIDA, T. G. DE. A
Monopolização de uma conversa informal: Uma
descrição dos movimentos de continua
ção a partir da linguística
sistêmico-funcional. EntreLetras, v.
13, n. 1, p. 158–183, 2022.
SOUSA, M. C. P. DE. O Corpus Tycho Brahe:
contribuições para as humanidades digitais no
Brasil. Filologia e linguı́stica
portuguesa, v. 16, n. esp., p. 53–93, 2014.
SOUSA, R. F. DE; BRUM, H. B.; NUNES, M. DAS G. V. A bunch of
helpfulness and sentiment corpora in brazilian portuguese.
Proceedings of Symposium in Information and Human Language Technology.
Anais...2019.
SOUZA, B. B. DE. A
interpretação de lı́nguas de
sinais como ação conjunta: uma
análise da interação entre o
intérprete de turno e o intérprete de
apoio. Trabalho de conclusão de curso.
Universidade Federal de São Carlos, 2021.
SOUZA, E. et al. An
Information Retrieval Pipeline for Legislative Documents from the
Brazilian Chamber of Deputies. Em: Legal Knowledge and
Information Systems. [s.l.] IOS Press, 2021a. p. 119–126.
SOUZA, E. DE. Construção e avaliação
de um treebank padrão ouro. Mestrado—[s.l.] PUC-Rio, 2023.
SOUZA, E. DE; FREITAS, C. Explorando variações no tagset e na
anotação Universal Dependencies (UD) para Português: Possibilidades e
resultados com base no treebank PetroGold. Anais do XIV
Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana.
Anais...Association for Computational Linguistics,
2023.
SOUZA, E. N. P. DE; CLARO, D. B.; GLAUBER, R. A Similarity Grammatical
Structures Based Method for Improving Open Information Systems.
j-jucs, v. 24, n. 1, p. 43–69, 28 jan. 2018.
SOUZA, E. N. P.; CLARO, D. B. Extração
de Relações utilizando Features Diferenciadas para Português.
Linguamática, v. 6, n. 2, p. 57–65, 2014.
SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. BERTimbau: pretrained BERT
models for Brazilian Portuguese. (R. Cerri, R. C. Prati,
Eds.)Proceedings of the 2020 Brazilian Conference on Intelligent
Systems. Anais...Springer International Publishing,
a2020.
SOUZA FREIRE, P. M.; MATIAS DA SILVA, F. R.; GOLDSCHMIDT, R. R. Fake news detection
based on explicit and implicit signals of a hybrid crowd: An approach
inspired in meta-learning. Expert Systems with
Applications, v. 183, p. 115414, 2021.
SOUZA, J. W. DA C. Descrição
linguística da complementaridade para a
sumarização automática
multidocumento. mathesis—[s.l.] Universidade Federal de
São Carlos, 2015.
SOUZA, J. W. DA C. Aprofundamento da caracterização
linguístico-computacional da complementaridade em um corpus jornalístico
multidocumento. tese de doutorado—[s.l.] (Doutorado em
Linguística) - Programa de Pós-Graduação em Linguística, Universidade
Federal de São Carlos, 2019.
SOUZA, J. W. DA C.; FELIPPO, A. D.
Caracterização da complementaridade temporal:
subsı́dios para sumarização
automática multidocumento. Alfa: Revista de
Linguı́stica (São José do Rio
Preto), v. 62, p. 125–150, 2018.
SOUZA, J. W. DA C.; FELIPPO, A. D.; PARDO, T. A. S. Investigação
da Identificação da Redundância na Sumarização Multidocumento.
Anais do III Student Workshop on Information and Human Language
Technology. Anais...a2011.
SOUZA, M. et al. Construction of a Portuguese
Opinion Lexicon from multiple resources. Proceedings of the 8th
Brazilian Symposium in Information and Human Language Technology.
Anais...b2011.
SOUZA, V.; NOBRE, J.; BECKER, K. Characterization of Anxiety,
Depression, and their Comorbidity from Texts of Social
Networks. Anais do XXXV Simpósio Brasileiro de Bancos de Dados.
Anais...Porto Alegre, Brazil: SBC, b2020.
SOUZA, V.; NOBRE, J.; BECKER, K. A Deep Learning Ensemble to Classify
Anxiety, Depression, and their Comorbidity from Texts of Social
Networks. Journal of Information and Data Management,
v. 12, n. 3, p. 306–325, b2021.
SPARCK JONES, K. Towards Better NLP System
Evaluation. Human Language
Technology: Proceedings of a Workshop held at
Plainsboro, New Jersey,
March 8-11, 1994. Anais...1994. Disponível
em: <https://aclanthology.org/H94-1018>
SPARCK JONES, K. Natural
language processing: a historical review. Em: Current issues
in computational linguistics: in honour of Don Walker. [s.l.]
Springer, 2001. p. 3–16.
SPARCK JONES, K.; GALLIERS, J. R. Evaluating Natural Language
Processing Systems: An Analysis and Review. Lecture Notes in
Computer Science, 1995.
SPÄRCK JONES, K. Report on the need for and provision of an ’ideal’
information retrieval test collection. Computer
Laboratory, 1975.
SPÄRCK JONES, K.; WALKER, S.; ROBERTSON, S. E. A probabilistic model of
information retrieval: development and comparative experiments.
Information processing & management, v. 36, n. 6,
p. 809–840, 2000.
SPARCK-JONES, K. Automatic Summarizing: Factors and Directions.
In Mani, I. And Maybury, M., editors, Advances in Automatic Text
Summarization. MIT Press, 1998.
SPEER, R.; CHIN, J.; HAVASI, C. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. CoRR, v.
abs/1612.03975, 2016.
SPEICHER, T. et al. Potential for discrimination in online
targeted advertising. Proceedings of the Conference on
Fairness, Accountability and Transparency. Anais...ACM,
2018.
SPINDOLA, S. et al. Interpretability of Attention Mechanisms in
a Portuguese-Based Question Answering System about the Blue
Amazon. Anais do XVIII Encontro Nacional de Inteligência
Artificial e Computacional. Anais...Porto Alegre, RS,
Brasil: SBC, 2021. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/18302>
SRIPADA, S.; GAO, F. Summarizing Dive Computer Data: A Case
Study in Integrating Textual and Graphical Presentations of Numerical
Data. Workshop on Multimodal Output Generation.
Anais...: MOG’07.Association for Computational
Linguistics, 2007.
SRIPADA, S.; REITER, E.; DAVY, I. SumTime-Mousam:
Configurable marine weather forecast generator. Expert
Update, v. 6, n. 3, p. 4–10, fev. 2004.
STAB, C. et al. Argumentation Mining in Persuasive Essays and
Scientific Articles from the Discourse Structure Perspective.
ArgNLP. Anais...2014.
STANOJEVIC, M.; SIMA’AN, K. BEER: BEtter Evaluation
as Ranking. Proceedings of the Ninth Workshop on Statistical
Machine Translation, WMT@ACL 2014, June 26-27, 2014, Baltimore,
Maryland, USA. Anais...2014. Disponível
em: <https://doi.org/10.3115/v1/w14-3354>
STANOVSKY, G. et al. Supervised open information
extraction. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers).
Anais...2018.
STEIN, F. O dispositivo para o gerenciamento de
sobreposições de vozes na conversa cotidiana
em português brasileiro. Salão de
Iniciação Cientı́fica (22.: 2010
out. 18-22: Porto Alegre, RS). Livro de resumos. Porto Alegre:
UFRGS., 2010.
STEVENS, S. S. A Scale
for the Measurement of the Psychological Magnitude Pitch.
Acoustical Society of America Journal, v. 8, n. 3, p.
185, jan. 1937.
STIENNON, N. et al. Learning to summarize with human
feedback. (H. Larochelle et al., Eds.)Advances in Neural
Information Processing Systems. Anais...Curran
Associates, Inc., 2020. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf>
STIVERS, T. Sequence
Organization. Em: The handbook of conversation
analysis. [s.l.] Wiley Online Library, 2013. v. 191.
STJ. Supremo Tribunal de Justiça — Composição. https://www.stj.jus.br/sites/portalp/Institucional/Composicao,
maio 24DC.
STRIEN, D. VAN et al. Assessing the impact of OCR quality on
downstream NLP tasks. ICAART 2020 - Proceedings of the 12th
International Conference on Agents and Artificial Intelligence.
Anais...2020.
STYMNE, S.; CANCEDDA, N.; AHRENBERG, L. Generation of Compound
Words in Statistical Machine Translation into Compounding
Languages. Computational Linguistics, p. 1—–42,
2013.
SU, J.; CARDIE, C.; NAKOV, P. Adapting Fake
News Detection to the Era of Large Language Models.
Proceedings of the Findings of the Association for Computational
Linguistics: NAACL 2024. Anais...2024.
SU, K.-Y.; WU, M.-W.; CHANG, J.-S. A new quantitative quality
measure for machine translation systems. Proceedings of the
14th conference on Computational linguistics -.
Anais...Association for Computational Linguistics,
1992. Disponível em: <http://dx.doi.org/10.3115/992133.992137>
SUCHANEK, F. M.; KASNECI, G.; WEIKUM, G. Yago: a core of
semantic knowledge. Proceedings of the 16th international
conference on World Wide Web. Anais...2007.
SUN, C.; EMONET, V.; DUMONTIER, M. A Comprehensive Comparison of
Automated FAIRness Evaluation Tools. (K. Wolstencroft et al.,
Eds.)13th International Conference on Semantic Web Applications and
Tools for Health Care and Life Sciences, SWAT4HCLS 2022,
Virtual Event, Leiden, The Netherlands, January 10th to 14th, 2022.
Anais...: CEUR Workshop
Proceedings.CEUR-WS.org, 2022. Disponível em: <http://ceur-ws.org/Vol-3127/paper-6.pdf>
SUNDAR, A.; HECK, L. Multimodal Conversational AI:
A Survey of Datasets and Approaches. Proceedings of the 4th
Workshop on NLP for Conversational AI. Anais...Dublin,
Ireland: Association for Computational Linguistics, 2022. Disponível em:
<https://aclanthology.org/2022.nlp4convai-1.12>
SUNKARA, M. et al. Multimodal
Semi-Supervised Learning Framework for Punctuation Prediction in
Conversational Speech. Proc. Interspeech 2020.
Anais...2020.
SUNKARA, M. et al. Neural
Inverse Text Normalization. CoRR, v.
abs/2102.06380, 2021.
SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to Sequence
Learning with Neural Networks. (Z. Ghahramani et al.,
Eds.)Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. Anais...2014.
Disponível em: <https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html>
TABOADA, M.; MANN, W. C. Rhetorical structure theory: Looking back and
moving ahead. Discourse studies, v. 8, n. 3, p.
423–459, 2006.
TACHIBANA, H.; UENOYAMA, K.; AIHARA, S. Efficiently Trainable
Text-to-Speech System Based on Deep Convolutional Networks with Guided
Attention. arXiv preprint arXiv:1710.08969, 2017.
TAKAMATSU, S.; SATO, I.; NAKAGAWA, H. Reducing wrong labels in
distant supervision for relation extraction. Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Anais...2012.
TAN, K. L.; LEE, C. P.; LIM, K. M. A Survey of Sentiment Analysis:
Approaches, Datasets, and Future Research. Applied
Sciences, 2023.
TAN, L.; PAL, S. Manawi: Using Multi-Word Expressions and
Named Entities to Improve Machine Translation.
Proceedings of the 14th Machine Translation Summint. Workshop on
Multi-word units in Machine Translation and Translation
Technologies. Anais...2014.
TAN, X. et al. A survey on neural speech synthesis. arXiv
preprint arXiv:2106.15561, 2021.
TANAKA, E. et al. Cem Mil Podcasts: A Spoken Portuguese Document Corpus.
arXiv preprint arXiv:2209.11871, 2022.
TANDOC JR., E. C.; LIM, Z. W.; LING, R. Defining
“Fake News”. Digital Journalism, v. 6,
n. 2, p. 137–153, 2018.
TANG, Y. et al. Multilingual
Translation with Extensible Multilingual Pretraining and Finetuning.
CoRR, v. abs/2008.00401, 2020.
TASLIMIPOOR, S.; ROHANIAN, O.; HA, L. A. Cross-lingual Transfer
Learning and Multitask Learning for Capturing Multiword
Expressions. Proceedings of the Joint Workshop on Multiword
Expressions and WordNet (MWE-WN 2019).
Anais...Florence, Italy: Association for Computational
Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5119>
TAUS. TAUS - The
Translation Industry in 2022
Report., 2020. Disponível em: <https://info.taus.net/translation-industry-2022-report-download>.
Acesso em: 19 ago. 2020
TAYLOR, R. et al. Galactica:
A Large Language Model for Science.
CoRR, v. abs/2211.09085, 2022.
TAYLOR, W. L. “Cloze procedure”: A new tool for measuring
readability. Journalism quarterly, v. 30, n. 4, p.
415–433, 1953.
TAYYAR MADABUSHI, H. et al.
AStitchInLanguageModels:
Dataset and Methods for the Exploration of Idiomaticity in Pre-Trained
Language Models. Findings of the Association for Computational
Linguistics: EMNLP 2021. Anais...Punta Cana, Dominican
Republic: Association for Computational Linguistics, nov. 2021.
Disponível em: <https://aclanthology.org/2021.findings-emnlp.294>
TAYYAR MADABUSHI, H. et al.
SemEval-2022 Task 2: Multilingual
Idiomaticity Detection and Sentence Embedding. Proceedings of
the 16th International Workshop on Semantic Evaluation (SemEval-2022).
Anais...Seattle, United States: Association for
Computational Linguistics, jul. 2022. Disponível em: <https://aclanthology.org/2022.semeval-1.13>
TEAM, G. et al. Gemma: Open Models Based on Gemini Research and
Technology., 2024. Disponível em: <https://arxiv.org/abs/2403.08295>
TEDESCHI, S. et al. What’s the Meaning of Superhuman Performance
in Today’s NLU? Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Anais...Toronto, Canada:
Association for Computational Linguistics, jul. 2023. Disponível em:
<https://aclanthology.org/2023.acl-long.697>
TEIXEIRA, A. L. R. et al. DaMata: A robot-journalist covering
the Brazilian Amazon deforestation. Proceedings of the 13th
International Conference on Natural Language Generation.
Anais...2020.
TEIXEIRA, B. H. F. Detecção automática de fronteiras prosódicas
na fala espontânea. tese de doutorado—Belo Horizonte:
Universidade Federal de Minas Gerais, 2022.
TEIXEIRA, B. H. F.; MITTMAN, M. M. Acoustic Models
for the Automatic Identification of Prosodic Boundaries in Spontaneous
Speech. Revista de Estudos da Linguagem, v. 26, n.
4, p. 1455–1488, 2018.
TEIXEIRA, B.; BARBOSA, P.; RASO, T. Automatic Detection of
Prosodic Boundaries in Brazilian Portuguese
Spontaneous Speech. (A. Villavicencio et al.,
Eds.)Computational Processing of the Portuguese
Language. Anais...Cham: Springer
International Publishing, 2018.
TEIXEIRA, E. N.; FONSECA, M. C. M.; SOARES, M. E. Resolução do pronome
nulo em Português Brasileiro: Evidência de movimentação ocular.
VEREDAS: Sintaxe das Línguas Brasileiras, v. 18, 2014.
TEIXEIRA, J. P. et al. Phonetic Events from the Labeling the
European Portuguese DataBase for Speech Synthesis, FEUP/IPBDB.
Seventh European Conference on Speech Communication and Technology.
Anais...2001.
TEIXEIRA, J. P.; FREITAS, D.; FUJISAKI, H. Prediction of
Fujisaki model’s phrase commands. Eighth European Conference on
Speech Communication and Technology. Anais...2003.
TEIXEIRA, S. C. S. B.; MARENGO, S. M. D. A.; FINATTO, M. J. B. Construindo
fichas terminológicas para estudos sócio-históricos. Revista
Diálogos, v. 10, n. 3, p. 261–279, 2022.
TEIXEIRA, S. H.; ZAMORA, M. H. Pensando a interseccionalidade a partir
da vida e morte de Marielle Franco.
Dignidade Re-Vista, 2019.
TENNANT, H. R. Evaluation of Natural
Language Processors. tese de doutorado—[s.l.] University of
Illinois Urbana-Champaign, 1980.
TESCH, L. M. O uso de
digressões em textos orais. Filologia e
Linguı́stica Portuguesa, v. 17, n. 2, p. 273–293,
2015.
TESNIÈRE, L. Eléments de Syntaxe
Structurale. Paris: Klincksieck, 1959.
THAKAR, H.; BHATT, B. Fake News Detection:
Recent Trends and Challenges. Social Network Analysis and
Mining, v. 14, 2024.
THAKKAR, M.; PISE, N. Survey of Available Datasets for Designing
Task Oriented Dialogue Agents. 2019 International Conference on
Mechatronics, Remote Sensing, Information Systems and Industrial
Information Technologies (ICMRSISIIT). Anais...2019.
Disponível em: <https://doi.org/10.1109/ICMRSISIIT46373.2020.9405898>
THEUNE, M. et al. From data to speech: a general approach.
Natural Language Engineering, v. 7, n. 1, p. 47–86,
2001.
THOMAS, C. et al. Automatic Detection and Rating of Dementia of
Alzheimer Type through Lexical Analysis of Spontaneous Speech.
Proceedings of the IEEE International Conference on Mechatronics
and Automation, p. 1569–1574, 2005.
THOMAS, R. L.; UMINSKY, D. Reliance on metrics
is a fundamental challenge for AI. Patterns, v. 3,
n. 5, 2022.
THOPPILAN, R. et al. LaMDA:
Language Models for Dialog Applications. CoRR, v.
abs/2201.08239, 2022.
THORNE, J.; VLACHOS, A. Automated Fact Checking: Task
Formulations, Methods and Future Directions. (E. M. Bender, L.
Derczynski, P. Isabelle, Eds.)Proceedings of the 27th International
Conference on Computational Linguistics. Anais...Santa
Fe, New Mexico, USA: Association for Computational Linguistics, ago.
2018.
TIRRELL, L. Toxic Speech: Inoculations and Antidotes. The
Southern Journal of Philosophy, 2018.
TJOA, E.; GUAN, C. A Survey on
Explainable Artificial Intelligence (XAI): Toward Medical XAI.
IEEE Transactions on Neural Networks and Learning
Systems, v. 32, n. 11, p. 4793–4813, 2021.
TOKUDA, K. et al. Speech parameter generation algorithms for
HMM-based speech synthesis. 2000 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.
00CH37100). Anais...IEEE, 2000.
TOLLES, J.; MEURER, W. J. Logistic Regression:
Relating Patient Characteristics to Outcomes. JAMA,
v. 316, n. 5, p. 533–534, ago. 2016.
TOMASELLO, M. The
usage-based theory of language acquisition. Em: BAVIN, E. L.;
NAIGLES, L. R. E. (Eds.). The Cambridge Handbook of Child
Language. Cambridge Handbooks em Language e Linguistics. 2. ed.
[s.l.] Cambridge University Press, 2015. p. 89–106.
TORAL, A. et al. Attaining the Unattainable? Reassessing
Claims of Human Parity in Neural Machine Translation.
Proceedings of WMT. Anais...Brussels,
Belgium: 2018.
TORRENT, T. T. et al. Copa 2014
FrameNet Brasil: a frame-based trilingual
electronic dictionary for the Football World Cup. Proceedings
of COLING 2014, the 25th International Conference on
Computational Linguistics: System Demonstrations.
Anais...Dublin, Ireland: Dublin City University;
Association for Computational Linguistics, ago. 2014. Disponível em:
<https://aclanthology.org/C14-2003>
TORRENT, T. T.; ELLSWORTH, M. Behind the Labels: Criteria for Defining
Analytical Categories in FrameNet Brasil. Veredas-Revista de
Estudos Linguisticos, v. 17, n. 1, p. 44–66, 2013.
TOSCANO, M. E. S. As
relações interpessoais e a
correção na lı́ngua falada.
Cadernos de Linguagem e Sociedade, v. 5, p. 119–119,
2001.
TOUVRON, H. et al. LLaMA: Open and
Efficient Foundation Language Models. CoRR, v.
abs/2302.13971, 2023.
TRAJANO, D.; BORDINI, R. H.; VIEIRA, R. OLID-BR: offensive language
identification dataset for Brazilian Portuguese. Language
Resources and Evaluation, 2023.
TRANCOSO, I. et al. Corpus
de diálogo CORAL.
PROPOR’98, 1998.
TRIFU, R. et al. Linguistic
indicators of language in major depressive disorder (MDD). An evidence
based research. Journal of Evidence-Based
Psychotherapies, v. 17, p. 105–128, mar. 2017.
TROTZEK, M.; KOITKA, S.; FRIEDRICH, C. M. Utilizing neural networks and
linguistic metadata for early detection of depression indications in
text sequences. IEEE Transactions on Knowledge and Data
Engineering, 2018.
TRUESWELL, J. C.; TANENHAUS, M. K. Approaches to studying
world-situated language use: Bridging the language-as-product and
language-as-action traditions. [s.l.] MIT Press, 2005.
TSUGAWA, S. et al. Recognizing Depression from Twitter
Activity. 33rd Annual ACM Conference on Human Factors in
Computing Systems. Anais...New York, USA:
Association for Computing Machinery, 2015.
TSVETKOV, Y.; WINTNER, S. Identification of Multi-word
Expressions by Combining Multiple Linguistic Information
Sources. Proceedings of the Conference on
Empirical Methods in Natural Language Processing.
Anais...: EMNLP ’11.Stroudsburg, PA, USA:
Association for Computational Linguistics, 2011.
TSVETKOV, Y.; WINTNER, S. Extraction of multi-word expressions
from small parallel corpora. Natural Language
Engineering, v. 18, n. 04, p. 549–573, 2012.
TURCHIOE, M. R. et al. Systematic review of
current natural language processing methods and applications in
cardiology. Heart, v. 108, n. 12, p. 909–916, 2022.
TURNER, R. et al. Generating Spatio-temporal Descriptions in
Pollen Forecasts. Proceedings of the Eleventh Conference of the
European Chapter of the Association for Computational Linguistics:
Demonstrations. Anais...: EACL’06.Trento, Italy:
Association for Computational Linguistics, 2006. Disponível em: <http://dl.acm.org/citation.cfm?id=1608974.1608998>
UCHIDA, H.; ZHU, M.; DELLA SENTA, T. A gift for a millennium.
IAS/UNU, Tokyo, 1999.
ULMER, D. et al. Experimental Standards for Deep Learning in
Natural Language Processing Research. Findings of the
Association for Computational Linguistics: EMNLP 2022.
Anais...Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, dez. 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.196>
UNESCO. Beijing consensus on artificial intelligence and
education. UNESCO Paris, 2019.
UNESCO, D. G. Recomendação sobre a Ética da Inteligência
Artificial. Disponível em: <
https://unesdoc.unesco.org/ark:/48223/pf0000381137_por >. Acesso
em: 28 ago. 2023.
UNICEF. Declaração Universal dos Direitos Humanos.
Disponível em: <
https://www.unicef.org/brazil/declaracao-universal-dos-direitos-humanos>.
Acesso em: 28 ago. 2023.
USZKOREIT, H.; LOMMEL, A. Multidimensional
Quality Metrics: A
New Unified Paradigm for
Human and Machine Translation
Quality Assessment. [s.l: s.n.].
UZÊDA, V. R.; PARDO, T. A. S.; NUNES, M. G. V. A comprehensive
comparative evaluation of RST-based summarization methods. ACM
Transactions on Speech and Language Processing (TSLP), v. 6, n.
4, p. 1–20, 2010.
VAJJALA, S.; MEURERS, D. Readability-based Sentence Ranking for
Evaluating Text Simplification. CoRR, v.
abs/1603.06009, 2016.
VALLE, R. et al. Flowtron: an Autoregressive Flow-based Generative
Network for Text-to-Speech Synthesis. arXiv preprint
arXiv:2005.05957, 2020.
VAN DEEMTER, K. et al. Toward a computational psycholinguistics of
reference production. Topics in cognitive science, v.
4, n. 2, p. 166–183, 2012.
VARGAS, D. F.; VAN DER LANN, R. H. A
contribuição da terminologia na
construção de linguagens
documentárias como os tesauros. Biblos, v.
25, n. 1, p. 21–34, 2011.
VARGAS, F. et al. HateBR: A Large
Expert Annotated Corpus of Brazilian Instagram
Comments for Offensive Language and Hate Speech Detection.
Proceedings of the Thirteenth Language Resources and Evaluation
Conference. Anais...a2022.
VARGAS, F. et al. Rhetorical Structure Approach for Online
Deception Detection: A Survey. (N. Calzolari et al.,
Eds.)Proceedings of the Thirteenth Language Resources and Evaluation
Conference. Anais...Marseille, France: European
Language Resources Association, jun. b2022. Disponível em: <https://aclanthology.org/2022.lrec-1.635>
VARGAS, F. A.; PARDO, T. A. S. Aspect clustering methods for
sentiment analysis. Proceedings of International conference on
computational processing of the Portuguese language.
Anais...Springer, 2018.
VARGAS, F. A.; SANTOS, R. S. S. D.; ROCHA, P. R. Identifying
Fine-Grained Opinion and Classifying Polarity on Coronavirus
Pandemic. Proceedings of the Brazilian Conference on
Intelligent Systems. Anais...2020.
VAROL, O. et al. Online human-bot interactions: Detection,
estimation, and characterization. Proceedings of the
International AAAI Conference on Web and Social Media.
Anais...AAAI Press, 2017.
VASWANI, A. et al. Attention is All you Need. (I. Guyon
et al., Eds.)Advances in Neural Information Processing Systems.
Anais...Curran Associates, Inc., 2017. Disponível em:
<https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>
VEAUX, C. et al. CSTR VCTK corpus: English multi-speaker
corpus for CSTR voice cloning toolkit. University
of Edinburgh. The Centre for Speech Technology Research (CSTR),
2017.
VERHAGEN, M. et al. SemEval-2010 Task 13:
TempEval-2. Proceedings of the 5th International
Workshop on Semantic Evaluation, SemEval.
Anais...2010. Disponível em: <https://www.aclweb.org/anthology/S10-1010.pdf>
VIEIRA, F. E.; FARACO, C. A. Texto e discurso. Escrever na
universidade. [s.l.] Parábola, 2019.
VIEIRA, J. M. M. The Brazilian
Portuguese eye tracking corpus with a predictability study focusing on
lexical and partial prediction. mathesis—Universidade
Federal do Ceará, Biblioteca Universitária: Federal University of Ceará
(UFC), 2020.
VIEIRA, R. et al. Coreference and anaphoric relations of demonstrative
noun phrases in multilingual corpus. Anaphora Processing:
linguistic, cognitive and computational modeling, p. 385–403,
2005.
VIEIRA, R. et al. Enriching the 1758 Portuguese Parish Memories
(Alentejo) with Named Entities. Journal of Open Humanities
Data, v. 7, p. 20, 2021.
VIEIRA, R.; GONÇALVES, P. N.; SOUZA, J. G. C. DE. Processamento
computacional de anáfora e correferência.
Revista de Estudos da Linguagem, v. 16, n. 1, 2012.
VIETHEN, J.; DALE, R. GRE3D7: A Corpus of
Distinguishing Descriptions for Objects in Visual Scenes.
UCNLG+Eval: Language Generation and Evaluation Workshop.
Anais...Edinburgh, UK: Association for
Computational Linguistics, 2011.
VILAIN, M. et al. A model-theoretic coreference
scoring scheme. Proceedings of the 6th
Message Understanding Conference
(MUC-6). Anais...Los Altos, CA, EUA:
Morgan Kaufmann, 1995. Disponível em: <http://acl.ldc.upenn.edu/M/M95/M95-1005.pdf>
VILAR, D. et al. Error Analysis of Statistical Machine
Translation Output. Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC’06). Anais...Genoa,
Italy: European Language Resources Association (ELRA), 2006. Disponível
em: <http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf>
VILLAR, G. S.; FINATTO, M. J. B. Acessibilidade textual e
terminológica: novos glossários sobre
oncologia para a ferramenta MedSimples. Mandinga-Revista de
Estudos Linguı́sticos (ISSN: 2526-3455), v. 7, n.
2, p. 23–42, 2023.
VINCIARELLI, A. et al. Open challenges in
modelling, analysis and synthesis of human behaviour in human–human and
human–machine interactions. Cognitive Computation,
v. 7, p. 397–413, 2015.
VINCZE, V.; NAGY T., I.; BEREND, G. Multiword Expressions and
Named Entities in the Wiki50 Corpus. Proceedings of the
International Conference Recent Advances in Natural Language Processing
2011. Anais...Hissar, Bulgaria: Association for
Computational Linguistics, set. 2011. Disponível em: <https://aclanthology.org/R11-1040>
VINCZE, V.; NAGY T., I.; FARKAS, R. Identifying
English and Hungarian Light Verb
Constructions: A Contrastive Approach. Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Anais...Sofia, Bulgaria: Association
for Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-2046>
VINYALS, O.; LE, Q. A Neural Conversational Model.,
2015. Disponível em: <https://doi.org/10.48550/arXiv.1506.05869>
VITÓRIO, D. et al. Ulysses-RFSQ: A Novel
Method to Improve Legal Information Retrieval Based on Relevance
Feedback. (J. C. Xavier-Junior, R. A. Rios,
Eds.)Intelligent Systems. Anais...Cham: Springer
International Publishing, 2022.
VITÓRIO, D. et al. Building a relevance
feedback corpus for legal information retrieval in the real-case
scenario of the Brazilian Chamber of
Deputies. Language Resources and
Evaluation, 2024.
VLACHOS, A.; RIEDEL, S. Fact checking: Task definition and
dataset construction. Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational Social Science.
Anais...Association for Computational Linguistics,
2014.
VOGEL, L. H. Um olhar para além do verbo: os usos
do olho na fala-em-interação.
Universidade Federal do Rio Grande do Sul, 2018.
VOORHEES, E. M.; TICE, D. M. Building a Question Answering
Test Collection. Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval. Anais...2000. Disponível
em: <https://dl.acm.org/doi/10.1145/345508.345577>
VOSOUGHI, S.; ROY, D.; ARAL, S. The spread of true and
false news online. Science, v. 359, n. 6380, p.
1146–1151, 2018.
VRANDEČIĆ, D.; KRÖTZSCH, M. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, v. 57, n. 10,
p. 78–85, 2014.
WAGNER FILHO, J. A. et al. The brWaC
Corpus: A New Open Resource for Brazilian
Portuguese. Proceedings of the Eleventh
International Conference on Language Resources and Evaluation
(LREC 2018). Anais...Miyazaki, Japan:
European Language Resources Association (ELRA), 2018. Disponível em:
<https://aclanthology.org/L18-1686>
WAGNER, J. et al. Dawn of the transformer era in speech emotion
recognition: closing the valence gap. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.
WAGNER, P.; MALISZ, Z.; KOPP, S. Gesture and speech in
interaction: An overview. Speech
CommunicationElsevier, 2014. Disponível em: <https://doi.org/10.1016/j.specom.2013.09.008>
WAGSTAFF, K. L. Machine learning that matters.
Proceedings of the 29th International Coference on International
Conference on Machine Learning. Anais...2012.
Disponível em: <https://doi.org/10.48550/arXiv.1206.4656>
WALKER, M. A. et al. PARADISE: A Framework for
Evaluating Spoken Dialogue Agents. 35th Annual Meeting of the
Association for Computational Linguistics and 8th Conference of the
European Chapter of the Association for Computational
Linguistics. Anais...Madrid, Spain: Association for
Computational Linguistics, jul. 1997. Disponível em: <https://aclanthology.org/P97-1035>
WALLIS, S. Completing Parsed
Corpora. Em: ABEILLÉ, A. (Ed.). Treebanks: Building and
Using Parsed Corpora. Dordrecht: Springer Netherlands, 2003. p.
61–71.
WALTER, E. (ED.). Cambridge Idioms Dictionary. 2. ed.
Cambridge, UK: campress, 2006.
WANG, A. et al. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding.
Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Anais...Brussels,
Belgium: Association for Computational Linguistics, nov. 2018.
Disponível em: <https://aclanthology.org/W18-5446/>
WANG, A. et al. SuperGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. Advances in Neural Information
Processing Systems, v. 32, p. 3261–3275, 2019.
WANG, B.; KOMATSUZAKI, A. GPT-J-6B: A 6 Billion Parameter
Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax,
2021.
WANG, C. et al. Covost: A diverse multilingual speech-to-text
translation corpus. arXiv preprint arXiv:2002.01320,
a2020.
WANG, C. et al. Voxpopuli: A large-scale multilingual speech corpus for
representation learning, semi-supervised learning and interpretation.
arXiv preprint arXiv:2101.00390, a2021.
WANG, C. et al. Neural Codec Language Models are Zero-Shot Text to
Speech Synthesizers. arXiv preprint arXiv:2301.02111,
a2023.
WANG, C.; WU, A.; PINO, J. Covost 2 and massively multilingual
speech-to-text translation. arXiv preprint
arXiv:2007.10310, b2020.
WANG, L. et al. Relation classification via multi-level
attention cnns. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Anais...2016.
WANG, S. et al. Want To
Reduce Labeling Cost? GPT-3 Can Help. (M.-F.
Moens et al., Eds.)Findings of the Association for Computational
Linguistics: EMNLP 2021. Anais...Punta Cana, Dominican
Republic: Association for Computational Linguistics, nov. b2021.
WANG, S. et al. GPT-NER: Named Entity Recognition via Large
Language Models., b2023. Disponível em: <https://arxiv.org/abs/2304.10428>
WANG, W. Y. “Liar, Liar
Pants on Fire”: A New Benchmark Dataset for Fake News
Detection. Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers).
Anais...Vancouver, Canada: Association for
Computational Linguistics, jul. 2017.
WANG, W. Y.; GEORGILA, K. Automatic detection of unnatural
word-level segments in unit-selection speech synthesis. 2011
IEEE Workshop on Automatic Speech Recognition & Understanding.
Anais...IEEE, 2011.
WANG, Y. et al. Tacotron: A fully end-to-end text-to-speech synthesis
model. arXiv preprint arXiv:1703.10135, 2017.
WANG, Y. et al. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation.
(M.-F. Moens et al., Eds.)Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021. Anais...Association for Computational
Linguistics, c2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.685>
WANG, Y. et al. DSPM-NLG: A Dual Supervised Pre-trained Model
for Few-shot Natural Language Generation in Task-oriented Dialogue
System. Findings of the Association for Computational
Linguistics: ACL 2023. Anais...c2023.
WANI, T. M. et al. A comprehensive review of speech emotion recognition
systems. IEEE Access, v. 9, p. 47795–47814, 2021.
WARDLE, C.; DERAKHSHAN, H. Information Disorder: Toward an
Interdisciplinary Framework for Research and Policy Making.
[s.l.] Council of Europe, 2017. Disponível em: <https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c>.
WASSERMAN, S.; FAUST, K. Social network analysis: Methods and
applications. [s.l.] Cambridge university press, 1994.
WATANABE, W. M. et al. Facilita: helping the reading of texts
available on the web. XV Brazilian Symposium on
Multimedia and the Web, WebMedia ’09, Fortaleza, Ceará,
Brazil, October 5-7, 2009. Anais...a2009. Disponível
em: <http://doi.acm.org/10.1145/1858477.1858516>
WATANABE, W. M. et al. Facilita: reading assistance for
low-literacy readers. Proceedings of the 27th Annual
International Conference on Design of Communication, SIGDOC
2009, Bloomington, Indiana, USA, October 5-7, 2009.
Anais...b2009. Disponível em: <http://doi.acm.org/10.1145/1621995.1622002>
WATSON, D. The
rhetoric and reality of anthropomorphism in artificial intelligence.
Minds and Machines, v. 29, n. 3, p. 417–440, 2019.
WAY, A. Quality
Expectations of Machine Translation. Em: MOORKENS, J. et al. (Eds.).
Translation Quality Assessment: From Principles to
Practice. Cham: Springer International Publishing, 2018. p.
159–178.
WAY, A.; FORCADA, M. L. Editors’ foreword to
the invited issue on SMT and NMT.
Machine Translation, v. 32, n. 3, p. 191–194, set.
2018.
WEI, J. et al. Emergent Abilities of
Large Language Models. Trans. Mach. Learn. Res., v.
2022, b2022.
WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. NeurIPS. Anais...a2022.
Disponível em: <http://papers.nips.cc/paper\_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html>
WEI, X. et al. ChatIE: Zero-Shot Information Extraction via
Chatting with ChatGPT., 2024. Disponível em: <https://arxiv.org/abs/2302.10205>
WEN, T.-H. et al. Semantically Conditioned
LSTM-based Natural Language Generation for Spoken Dialogue
Systems. Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Anais...:
EMNLP’15.Lisbon, Portugal: Association for Computational Linguistics,
2015. Disponível em: <http://aclweb.org/anthology/D15-1199>
WEN, T.-H. et al. Multi-domain Neural Network Language
Generation for Spoken Dialogue Systems. Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies.
Anais...: HLT-NAACL’16.San Diego, California:
Association for Computational Linguistics, 2016. Disponível em: <https://aclanthology.info/pdf/N/N16/N16-1015.pdf>
WERBOS, P. J. Backpropagation
through time: what it does and how to do it. Proc.
IEEE, v. 78, n. 10, p. 1550–1560, 1990.
WHO. Comprehensive mental health action plan 2013–2030.
[s.l.] World Health Organization; World Health Organization, 2021.
WIEGREFFE, S.; PINTER, Y. Attention is not not
Explanation. (K. Inui et al., Eds.)Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Anais...Hong Kong, China: Association
for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1002>
WIELING, M.; RAWEE, J.; NOORD, G. VAN. Squib:
Reproducibility in Computational Linguistics: Are We Willing to
Share? Computational Linguistics, v. 44, n. 4, p.
641–649, dez. 2018.
WIGHTMAN, C. W.; OSTENDORF, M. Automatic recognition
of prosodic phrases. [Proceedings] ICASSP 91: 1991
International Conference on Acoustics, Speech, and Signal
Processing, v. 1, p. 321–324, 1991.
WILKENS, R. et al. LexSubNC: A Dataset
of Lexical Substitution for Nominal Compounds. Proceedings of
the 12th International Conference on Computational Semantics (IWCS
2017). Anais...Montpellier, France: 2017.
WILKINSON, M.; DUMONTIER, M.; AALBERSBERG, ET AL. The FAIR Guiding
Principles for scientific data management and stewardship.
Scientific data, v. 3, n. 1, p. 1–9, 2016.
WILKINSON, M.; DUMONTIER, M.; SANSONE, ET AL. Evaluating
FAIR maturity through a scalable, automated, community-governed
framework. Sc. Data, v. 6, n. 1, p. 1–12,
2019.
WILKS, Y. Is Word Sense Disambiguation Just One More NLP
Task? Computers and the Humanities, v. 34, n.
1-2, p. 235–243, 2000.
WILLIAMS, I. et al. Contextual speech recognition in end-to-end
neural network systems using beam search. 2018. Disponível em:
<https://www.isca-speech.org/archive/Interspeech_2018/pdfs/2416.pdf>
WILLIAMS, J. D.; RAUX, A.; HENDERSON, M. The dialog state tracking
challenge series: A review. Dialogue &
Discourse, v. 7, n. 3, p. 4–33, 2016.
WILLRICH, R.; SANTOS, D. Avaliação
no DIP. Linguamática, v.
15, n. 1, p. 69–87, 2023.
WILSON, T. P.; ZIMMERMAN, D. H. The structure of
silence between turns in two-party conversation. Discourse
processes, v. 9, n. 4, p. 375–390, 1986.
WIVES, L. K. Técnicas de
Recuperação de
Informações Com Ênfase em
Informações Textuais. tese de
doutorado—[s.l.] Universidade Federal do Rio Grande do Sul, 1997.
WOLF, T. et al. Transformers: State-of-the-Art Natural Language
Processing. Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
Anais...Online: Association for Computational
Linguistics, out. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.emnlp-demos.6>
WOLINSKI, F.; VICHOT, F.; DILLET, B. Automatic processing proper
names in texts. Proc. Conference on European Chapter of the
Association for Computational Linguistics.
Anais...EACL, 1995.
WU, H. et al. SemEHR: A general-purpose semantic search
system to surface semantic data from clinical notes for tailored care,
trial recruitment, and clinical research. J Am Med Inform
Assoc, v. 25, n. 5, p. 530–537, 2018.
WU, Y. et al. Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.
WU, Y. et al. Memorizing Transformers. The Tenth
International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022.
Anais...OpenReview.net, 2022. Disponível em: <https://openreview.net/forum?id=TrjbxzRcnf->
XAVIER, C. C.; LIMA, V. L. S. DE; SOUZA, M. Open information extraction
based on lexical semantics. Journal of the Brazilian Computer
Society, v. 21, n. 1, p. 1–14, 2015.
XAVIER, R. C. Português no Direito: Linguagem Forense.
Rio de Janeiro: Forense, 2002. p. 1
XIE, S. M. et al. An Explanation of In-context Learning as
Implicit Bayesian Inference. The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. Anais...OpenReview.net, 2022.
Disponível em: <https://openreview.net/forum?id=RdJVFCHjUMI>
XIE, Z.; COHN, T.; LAU, J. H. The Next Chapter: A Study of Large
Language Models in Storytelling., 2023. Disponível em: <https://arxiv.org/abs/2301.09790>
XIONG, R. et al. On Layer Normalization in the Transformer
Architecture. Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Anais...: Proceedings of Machine Learning
Research.PMLR, 2020. Disponível em: <http://proceedings.mlr.press/v119/xiong20b.html>
XU, W.; CALLISON-BURCH, C.; NAPOLES, C. Problems in Current Text
Simplification Research: New Data Can Help. Transactions of
the Association for Computational Linguistics, v. 3, p.
283–297, 2015.
XU, W.; RUDNICKY, A. Can artificial
neural networks learn language models? Proc. 6th
International Conference on Spoken Language Processing (ICSLP 2000).
Anais...2000.
XU, Y. et al. Hard Sample Aware Prompt-Tuning. (A.
Rogers, J. L. Boyd-Graber, N. Okazaki, Eds.)Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023. Anais...Association for Computational
Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.acl-long.690>
XUE, L. et al. mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer. (K. Toutanova et al.,
Eds.)Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11, 2021.
Anais...Association for Computational Linguistics,
2021. Disponível em: <https://doi.org/10.18653/v1/2021.naacl-main.41>
YADAV, S. et al. Identifying
Depressive Symptoms from Tweets: Figurative Language Enabled Multitask
Learning Framework. 28th International Conference on
Computational Linguistics. Anais...Barcelona, Spain
(Online): International Committee on Computational Linguistics, 2020.
YAMAGUCHI, A. et al. Frustratingly Simple Pretraining
Alternatives to Masked Language Modeling. Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing.
Anais...Online; Punta Cana, Dominican Republic:
Association for Computational Linguistics, nov. 2021. Disponível em:
<https://aclanthology.org/2021.emnlp-main.249>
YAN, M. Y.; GUSTAD, L. T.; NYTRØ, Ø. Sepsis prediction, early detection,
and identification using clinical text for machine learning: a
systematic review. J Am Med Inform Assoc, v. 29, n. 3,
p. 559–575, jan. 2022.
YANG, F.; HEEMAN, P. A.; KUN, A. L. An Investigation of
Interruptions and Resumptions in Multi-Tasking Dialogues.
Computational Linguistics, v. 37, n. 1, p. 75–104, mar.
a2011.
YANG, H. et al. Clinical Trial Classification of SNS24 Calls with Neural
Networks. Future Internet, v. 14, n. 5, p. 130, 2022.
YANG, J.-H. et al. Enriching Mandarin speech
recognition by incorporating a hierarchical prosody model. 2011
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Anais...b2011. Disponível em: <https://doi.org/10.1109/ICASSP.2011.5947492>
YANG, K.-C. et al. Scalable and generalizable social bot detection
through data selection. Proceedings of the AAAI Conference on
Artificial Intelligence, v. 34, n. 01, p. 1096–1103, 2020.
YANG, M. et al. Learning ASR pathways: A sparse multilingual ASR
model., 2023. Disponível em: <https://arxiv.org/abs/2209.05735>
YANG, P.; FANG, H.; LIN, J. Anserini: Enabling the use of lucene
for information retrieval research. Proceedings of the 40th
international ACM SIGIR conference on research and development in
information retrieval. Anais...2017.
YANG, X. et al. An Entity-Mention Model for Coreference
Resolution with Inductive Logic Programming. Proceeding of
Association for Computational Linguistics.
Anais...2008.
YANG, Z. et al. XLNet: Generalized Autoregressive Pretraining
for Language Understanding. (H. M. Wallach et al.,
Eds.)Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada.
Anais...2019. Disponível em: <https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html>
YAO, S. et al. ReAct: Synergizing Reasoning and Acting in
Language Models., 2023. Disponível em: <https://arxiv.org/abs/2210.03629>
YATES, A.; COHAN, A.; GOHARIAN, N. Depression and Self-Harm
Risk Assessment in Online Forums. Conference on Empirical
Methods in Natural Language Processing.
Anais...Copenhagen, Denmark: Association for
Computational Linguistics, 2017.
YAZDANI, M.; FARAHMAND, M.; HENDERSON, J. Learning Semantic
Composition to Detect Non-compositionality of Multiword
Expressions. Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Anais...Lisbon,
Portugal: Association for Computational Linguistics, set. 2015.
Disponível em: <https://aclanthology.org/D15-1201>
YAZDAVAR, A. H. et al. Semi-Supervised Approach
to Monitoring Clinical Depressive Symptoms in Social Media.
IEEE/ACM International Conference on Advances in Social Network
Analysis and Mining. Anais...2017.
YEH, Y.-T.; ESKENAZI, M.; MEHRI, S. A Comprehensive Assessment
of Dialog Evaluation Metrics. The First Workshop on Evaluations
and Assessments of Neural Conversation Systems.
Anais...Online: Association for Computational
Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.eancs-1.3>
YI, J.; TAO, J. Self-attention Based Model for Punctuation Prediction
Using Word and Speech Embeddings. ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), p. 7270–7274, 2019.
YNGVE, V. H. Random generation of English sentences.
[s.l.] Massachusetts Inst. of Technology, 1961.
YNGVE, V. H. On getting a word in edgewise. Papers from
the sixth regional meeting Chicago Linguistic Society, April 16-18,
1970, Chicago Linguistic Society, Chicago.
Anais...1970.
YU, J. et al. Choosing the content of
textual summaries of large time-series data sets. Natural
Language Engineering, v. 13, n. 1, p. 25–49, 2007.
YU, X.; LAM, W. Jointly identifying entities and extracting
relations in encyclopedia text via a graphical model approach.
Coling 2010: Posters. Anais...2010.
YUAN, W.; NEUBIG, G.; LIU, P. BARTScore: Evaluating Generated
Text as Text Generation. Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual.
Anais...a2021. Disponível em: <https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html>
YUAN, Y. et al. A relation-specific attention network for joint
entity and relation extraction. International joint conference
on artificial intelligence. Anais...International Joint
Conference on Artificial Intelligence, b2021.
YUE, Z. et al. Evidence-Driven Retrieval Augmented Response
Generation for Online Misinformation. (K. Duh, H. Gomez, S.
Bethard, Eds.)Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers). Anais...Mexico
City, Mexico: Association for Computational Linguistics, jun. 2024.
Disponível em: <https://aclanthology.org/2024.naacl-long.313>
ZAMPIERI, N.; ILLINA, I.; FOHR, D. Multiword Expression Features
for Automatic Hate Speech Detection. (E. Métais et al.,
Eds.)Natural Language Processing and Information Systems - 26th
International Conference on Applications of Natural Language to
Information Systems, NLDB 2021, Saarbrücken,
Germany, June 23-25, 2021, Proceedings. Anais...:
Lecture Notes em Computer Science.Springer, 2021. Disponível em: <https://doi.org/10.1007/978-3-030-80599-9\_14>
ZANINELLO, A.; BIRCH, A. Multiword Expression aware Neural
Machine Translation. Proceedings of the 12th Language Resources
and Evaluation Conference. Anais...Marseille, France:
European Language Resources Association, 2020. Disponível em: <https://aclanthology.org/2020.lrec-1.471>
ZANUZ, L.; RIGO, S. J. Fostering Judiciary
Applications with New Fine-Tuned Models for Legal Named Entity
Recognition in Portuguese. (V. Pinheiro et al.,
Eds.)Computational Processing of the Portuguese Language.
Anais...Cham: Springer International Publishing, 2022.
ZAROCOSTAS, J. How to fight an infodemic. The lancet,
v. 395, n. 10225, p. 676, 2020.
ZE, H.; SENIOR, A.; SCHUSTER, M. Statistical parametric speech
synthesis using deep neural networks. 2013 ieee international
conference on acoustics, speech and signal processing.
Anais...IEEE, 2013.
ZELASKO, P. et al. Punctuation Prediction Model for
Conversational Speech. (B. Yegnanarayana, Ed.)Interspeech 2018,
19th Annual Conference of the International Speech Communication
Association, Hyderabad, India, 2-6 September 2018.
Anais...ISCA, 2018. Disponível em: <https://doi.org/10.21437/Interspeech.2018-1096>
ZELENINA, M. Eye Tracking for NLP.
SlideShare, 2015. Disponível em: <https://www.slideshare.net/mariezelenina/presentation-2-47610828>
ZELENKO, D.; AONE, C.; RICHARDELLA, A. Kernel methods for relation
extraction. Journal of machine learning research, v. 3,
n. Feb, p. 1083–1106, 2003.
ZEMAN, D. Reusable Tagset Conversion Using Tagset
Drivers. Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08).
Anais...Marrakech, Morocco: European Language Resources
Association (ELRA), 2008. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf>
ZEMAN, D.; RESNIK, P. Cross-Language Parser Adaptation between
Related Languages. Proceedings of the IJCNLP-08
Workshop on NLP for Less Privileged Languages.
Anais...2008. Disponível em: <https://aclanthology.org/I08-3008>
ZEN, H. et al. LibriTTS: A Corpus Derived from
LibriSpeech for Text-to-Speech. Proc. Interspeech
2019, p. 1526–1530, 2019.
ZENG, D. et al. Relation classification via convolutional deep
neural network. Proceedings of COLING 2014, the 25th
international conference on computational linguistics: technical papers.
Anais...2014.
ZEWDU, A.; YITAGESU, B. Part of speech
tagging: a systematic review of deep learning and machine learning
approaches. Journal of Big Data, v. 9, jan. 2022.
ZHANG, A. et al. Dive into Deep Learning. [s.l.]
Cambridge University Press, 2023.
ZHANG, H. The Optimality of Naive Bayes. Proceedings of
the Seventeenth International Florida Artificial Intelligence Research
Society Conference. Anais...2004.
ZHANG, S. et al. Opt: Open
pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.
ZHANG, S. X. et al. Predictors of
Depression and Anxiety Symptoms in Brazil during COVID-19.
Int J Environ Res Public Health, v. 18, n. 13, 30 jun.
2021.
ZHANG, S.; DUH, K.; VAN DURME, B. Mt/ie: Cross-lingual open
information extraction with neural sequence-to-sequence models.
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers.
Anais...2017.
ZHANG, T. et al. BERTScore: Evaluating Text Generation with
BERT. 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. Anais...OpenReview.net, 2020. Disponível
em: <https://openreview.net/forum?id=SkeHuCVFDr>
ZHAO, J. et al. Gender Bias in Coreference Resolution:
Evaluation and Debiasing Methods. Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). Anais...New Orleans, Louisiana:
Association for Computational Linguistics, jun. 2018. Disponível em:
<https://aclanthology.org/N18-2003>
ZHAO, S.; GRISHMAN, R. Extracting relations with integrated
information using kernel methods. Proceedings of the 43rd
annual meeting of the association for computational linguistics
(acl’05). Anais...2005.
ZHAO, W. X. et al. A
Survey of Large Language Models. CoRR, v.
abs/2303.18223, 2023.
ZHONG, H. et al. How Does
NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.
Anais...Association for Computational Linguistics,
2020.
ZHOU, C. et al. LIMA: Less
Is More for Alignment. CoRR, v. abs/2305.11206,
2023.
ZHOU, L. et al. A comparison of classification methods for predicting
deception in computer-mediated communication. Journal of
Management Information Systems, v. 20, n. 4, p. 139–165, 2004.
ZHOU, L. An empirical investigation of deception behavior in instant
messaging. IEEE Transactions on Professional
Communication, v. 48, n. 2, p. 147–160, 2005.
ZHOU, N. et al. CDGAN-BERT:
Adversarial constraint and diversity discriminator for semi-supervised
text classification. Knowledge-Based Systems, v.
284, p. 111291, 2024.
ZHU, W.; BHAT, S. GRUEN for evaluating linguistic quality of generated
text. arXiv preprint arXiv:2010.02498, 2020.
ZHUANG, F. et al. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, v. 109, n. 1, p. 43–76, 2020.
ZIEGLER, D. M. et al. Fine-Tuning Language Models from
Human Preferences. CoRR, v. abs/1909.08593, 2019.
ZILIO, L.; FINATTO, M. J.; VIEIRA, R. Named Entity Recognition
Applied to Portuguese Texts from the XVIII
Century. (C. Trojahn et al., Eds.)Proceedings of the Second
Workshop on Digital Humanities and Natural Language Processing (2nd
DHandNLP 2022) co-located with International Conference on the
Computational Processing of Portuguese (PROPOR 2022),
Virtual Event, Fortaleza, Brazil, 21st March, 2022.
Anais...: CEUR Workshop
Proceedings.CEUR-WS.org, 2022. Disponível em: <http://ceur-ws.org/Vol-3128/paper10.pdf>
ZILIO, L.; LAZZARI, R. R.; FINATTO, M. J. B. NLP for historical
Portuguese: Analysing 18th-century medical texts. Proceedings of
the International Conference on the Computational treatment of
Portuguese, PROPOR, 2024.
ZIN, K. K. Hidden Markov model with rule based
approach for part of speech tagging of Myanmar language.
International Conference on Intelligent Cloud Computing.
Anais...2009. Disponível em: <https://api.semanticscholar.org/CorpusID:63473605>
ZOBEL, J. How reliable are the results of large-scale
information retrieval experiments? Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in
information retrieval. Anais...ACM, 1998.