Referências

ABADJI, J. et al. Towards a Cleaner Document-Oriented Multilingual Crawled Corpus. Proceedings of the Thirteenth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.463>
ABBOTT, B. Presuppositions and common ground. Linguistics and philosophy, v. 31, p. 523–538, 2008.
ABDIN, M. et al. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone., 2024. Disponível em: <https://arxiv.org/abs/2404.14219>
ABERCROMBIE, G. et al. Mirages. On Anthropomorphism in Dialogue Systems. (H. Bouamor, J. Pino, K. Bali, Eds.)Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Anais...Singapore: Association for Computational Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.290>
ABNEY, S. P. Parsing By Chunks. Em: BERWICK, R. C.; ABNEY, S. P.; TENNY, C. (Eds.). Principle-Based Parsing: Computation and Psycholinguistics. Dordrecht: Springer Netherlands, 1992. p. 257–278.
ABONIZIO, H. Q. et al. Language-Independent Fake News Detection: English, Portuguese, and Spanish Mutual Features. Future Internet, v. 12, n. 5, 2020.
ABREU, S. C. DE; VIEIRA, R. Relp: Portuguese open relation extraction. KO KNOWLEDGE ORGANIZATION, v. 44, n. 3, p. 163–177, 2017.
ACHIAM, J. et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
ACKEL, A. Abordagens digitais para estudos de Paleografia: desafios, atualidade, desdobramentos. LaborHistórico, v. 7, n. 3, p. 100–120, 2021.
ACOSTA, O.; VILLAVICENCIO, A.; MOREIRA, V. Identification and Treatment of Multiword Expressions Applied to Information Retrieval. Proceedings of the Workshop on Multiword Expressions: from Parsing and Generation to the Real World. Anais...Portland, Oregon, USA: Association for Computational Linguistics, jun. 2011. Disponível em: <https://aclanthology.org/W11-0815>
AEJAS, B.; BELHI, A.; BOURAS, A. Smart Contracts Auto-generation for Supply Chain Contexts. (F. Noël et al., Eds.)Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies. Anais...Cham: Springer Nature Switzerland, 2023.
AFANTENOS, S.; ASHER, N. Counter-argumentation and discourse: A case study. Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing. Anais...CEUR Workshop Proceedings, 2014.
AFONSO, S. et al. Floresta sintá(c)tica: a treebank for Portuguese. (M. G. Rodrigues, C. P. S. Araujo, Eds.)Proceedings of the Third International Conference on Language Resources and Evaluation (LREC 2002). Anais...Paris: ELRA, 2002.
AGHAJANYAN, A.; GUPTA, S.; ZETTLEMOYER, L. Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. (C. Zong et al., Eds.)Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.568>
AGICHTEIN, E.; GRAVANO, L. Snowball: Extracting relations from large plain-text collections. Proceedings of the fifth ACM conference on Digital libraries. Anais...2000.
AGIRRE, E. Cross-Lingual Word Embeddings. Computational Linguistics, v. 46, n. 1, p. 245–248, mar. 2020.
AGNOLONI, T. et al. Making Italian Parliamentary Records Machine-Actionable: the Construction of the ParlaMint-IT corpus. Proceedings of the Workshop ParlaCLARIN III within the 13th Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.parlaclarin-1.17>
AHA, D. W.; KIBLER, D.; ALBERT, M. K. Instance-based learning algorithms. Machine Learning, v. 6, n. 1, p. 37–66, 1 jan. 1991.
AHN, L. VON; KEDIA, M.; BLUM, M. Verbosity: A Game for Collecting Common-Sense Facts. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Anais...: CHI ’06.New York, NY, USA: Association for Computing Machinery, 2006. Disponível em: <https://doi.org/10.1145/1124772.1124784>
AI and Ethics. Springer, 2023. Disponível em: <https://link.springer.com/journal/43681/volumes-and-issues>. Acesso em: 7 abr. 2023
AI@META. Llama 3 Model Card. 2024.
AJAY, H. B.; TILLET, P.; PAGE, E. B. Analysis of essays by computer (AEC-II). Storrs, CT: Univeristy of Connecticut, 1973.
AKBIK, A. et al. Multilingual information extraction with PolyglotIE. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations. Anais...2016. Disponível em: <https://aclanthology.org/C16-2056/>
AKÇAY, M. B.; OĞUZ, K. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Communication, v. 116, p. 56–76, 2020.
ALAM, T.; KHAN, A.; ALAM, F. Punctuation Restoration using Transformer Models for High-and Low-Resource Languages. Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020). Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.wnut-1.18>
ALBUQUERQUE, G. et al. Applying event classification to reveal the Estado da Índia. Proceedings of the International Conference on the Computational treatment of Portuguese, PROPOR, a2024.
ALBUQUERQUE, H. et al. UlyssesNERQ: Expanding Queries from Brazilian Portuguese Legislative Documents through Named Entity Recognition. (P. Gamallo et al., Eds.)Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. b2024. Disponível em: <https://aclanthology.org/2024.propor-1.35>
ALBUQUERQUE, H. O. et al. UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition. (V. Pinheiro et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2022. Disponível em: <https://github.com/ulysses-camara/>
ALBUQUERQUE, H. O. et al. Named entity recognition: a survey for the portuguese language. Procesamiento del Lenguaje Natural, a2023.
ALBUQUERQUE, H. O. et al. On the Assessment of Deep Learning Models for Named Entity Recognition of Brazilian Legal Documents. (N. Moniz et al., Eds.)Progress in Artificial Intelligence. Anais...Cham: Springer Nature Switzerland, b2023.
ALCAIM, A.; SOLEWICZ, J. A.; MORAES, J. A. DE. Freqüência de ocorrência dos fones e listas de frases foneticamente balanceadas no português falado no Rio de Janeiro. Journal of Communication and Information Systems, v. 7, n. 1, 1992.
ALEIXO, P.; PARDO, T. A. S. CSTTool: um parser multidocumento automático para o Português do Brasil. IV Workshop on MSc Dissertation and PhD Thesis in Artificial Intelligence–WTDIA. Anais...c2008.
ALEIXO, P.; PARDO, T. A. S. CSTNews: um córpus de textos jornalísticos anotados segundo a teoria discursiva multidocumento CST (Cross-document Structure Theory. [s.l.] Universidade de São Paulo (USP); São Carlos, SP, Brasil., b2008. Disponível em: <http://repositorio.icmc.usp.br//handle/RIICMC/6761>.
ALEIXO, P.; PARDO, T. A. S. Uma Ferramenta Semi-automática para Anotação de Córpus pela Teoria Discursiva Multidocumento CST. [s.l.] Instituto de Ciências Matemáticas e de Computação, a2008.
ALENCAR, L. F. DE. Donatus: uma interface amigável para o estudo da sintaxe formal utilizando a biblioteca em Python do NLTK. Alfa: Revista de Linguística (São José do Rio Preto), v. 56, n. 2, p. 523–555, jul. 2012.
ALENCAR, L. F. DE; CUCONATO, B.; RADEMAKER, A. MorphoBr: an open source large-coverage full-form lexicon for morphological analysis of Portuguese. Texto Livre, v. 11, n. 3, p. 1–25, dez. 2018.
ALENCAR, R. Processos de categorização social: emergência de categorias sociais na fala em interação. Revista Investigações, v. 21, n. 2, p. 115–131, 2008.
ALENCAR, V.; ALCAIM, A. LSF and LPC-derived features for large vocabulary distributed continuous speech recognition in Brazilian Portuguese. 2008 42nd Asilomar Conference on Signals, Systems and Computers. Anais...IEEE, 2008.
ALIGULIYEV, R. M. et al. COSUM: Text summarization based on clustering and optimization. Expert Systems, v. 36, n. 1, p. e12340, 2019.
ALIKANIOTIS, D.; YANNAKOUDAKIS, H.; REI, M. Automatic Text Scoring Using Neural Networks. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Anais...Association for Computational Linguistics, 2016.
ALISSON, S. Their god is not our god. Disponível em: <https://www.thecontinent.org/_files/ugd/287178_73f3d2af22614e678f277b631a62e491.pdf>. Acesso em: 11 jun. 2023.
ALLES, V. J. Construção de um corpus para extrair entidades nomeadas do Diário Oficial da União utilizando aprendizado supervisionado. mathesis—[s.l.] Master’s thesis, Universidade Federal de Brasília, 2018.
ALLWOOD, J.; TRAUM, D.; JOKINEN, K. Cooperation, dialogue and ethics. International Journal of Human-Computer Studies, v. 53, n. 6, p. 871–914, 2000.
ALMASI, M.; SCHIØNNING, A. Fine-Tuning GPT-3 for Synthetic Danish News Generation. Proceedings of the 16th International Natural Language Generation Conference. Anais...2023.
ALMEIDA, G. DE. Translating the post-editor: an investigation of post-editing changes and correlations with professional experience across two Romance languages. 2013. Disponível em: <https://api.semanticscholar.org/CorpusID:60255248>
ALMEIDA, P. G. R. Uma jornada para um Parlamento inteligente: Câmara dos Deputados do Brasil. Red Información, v. 24, 2021.
ALMOUZINI, S.; KHEMAKHEM, M.; ALAGEEL, A. Detecting Arabic Depressed Users from Twitter Data. Procedia Computer Science, v. 163, p. 257–265, 2019.
ALONSO, M. A. et al. Sentiment Analysis for Fake News Detection. Electronics, v. 10, n. 11, 2021.
ALTMANN, G. T.; KAMIDE, Y. Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, v. 73, n. 3, p. 247–264, 1999.
ALTMANN, G. T.; MIRKOVIĆ, J. Incrementality and prediction in human sentence processing. Cognitive science, v. 33, n. 4, p. 583–609, 2009.
ALTUNYURT, L.; ORHAN, Z.; GÜNGÖR, T. A Composite Approach for Part of Speech Tagging in Turkish. 2006. Disponível em: <https://api.semanticscholar.org/CorpusID:9439761>
ALUÍSIO, S. et al. An Account of the Challenge of Tagging a Reference Corpus for Brazilian Portuguese. (N. J. Mamede et al., Eds.)Computational Processing of the Portuguese Language. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
ALUÍSIO, S.; GASPERIN, C. Fostering Digital Inclusion and Accessibility: The PorSimples project for Simplification of Portuguese Texts. (T. Solorio, T. Pedersen, Eds.)Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas. Anais...Los Angeles, California: Association for Computational Linguistics, jun. 2010. Disponível em: <https://aclanthology.org/W10-1607>
ALVARES, R. V.; GARCIA, A. C. B.; FERRAZ, I. STEMBR: A stemming algorithm for the Brazilian Portuguese language. Portuguese conference on artificial intelligence. Anais...Springer, 2005.
AMARAL, C. et al. Priberam’s question answering system in qa@ clef 2008. Workshop of the Cross-Language Evaluation Forum for European Languages. Anais...Springer, 2008.
AMARAL, D. O. F. DO. O reconhecimento de entidades nomeadas por meio de conditional random fields para a lı́ngua portuguesa. Dissertação de Mestrado, Pontifı́cia Universidade Católica do Rio Grande do Sul, 2013.
AMARAL, D.; VIEIRA, R. Nerp-crf: uma ferramenta para o reconhecimento de entidades nomeadas por meio de conditional random fields. Linguamática (Braga), 2014.
AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and Statistical Manual of Mental Disorders 5th edition. Arlington, VA: American Psychiatric Association, 2013.
AMORIM, E.; CANÇADO, M.; VELOSO, A. Automated Essay Scoring in the Presence of Biased Ratings. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...Association for Computational Linguistics, 2018.
AMORIM, E.; VELOSO, A. A Multi-aspect Analysis of Automatic Essay Scoring for Brazilian Portuguese. Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics. Anais...Valencia, Spain: Association for Computational Linguistics, abr. 2017.
ANACLETO, J. et al. Can Common Sense uncover cultural differences in computer applications? (M. Bramer, Ed.)Artificial Intelligence in Theory and Practice. Anais...Boston, MA: Springer US, 2006.
ANACLETO, J. C. et al. A Common Sense-Based On-Line Assistant for Training Employees. (C. Baranauskas et al., Eds.)Human-Computer Interaction – INTERACT 2007. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
ANANIADOU, S.; MCNAUGHT, J. Text Mining for Biology And Biomedicine. Norwood, MA, USA: Artech House, Inc., 2005.
ANANTHAKRISHNAN, S.; NARAYANAN, S. S. Automatic Prosodic Event Detection Using Acoustic, Lexical, and Syntactic Evidence. IEEE Transactions on Audio, Speech, and Language Processing, v. 16, n. 1, p. 216–228, 2008.
ANCHIÊTA, R. T. et al. PiLN IDPT 2021: Irony Detection in Portuguese Texts with Superficial Features and Embeddings. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), XXXVII International Conference of the Spanish Society for Natural Language Processing., Málaga, Spain, September, 2021. Anais...2021.
ANDERSEN, P. M. et al. Automatic extraction of facts from press releases to generate news stories. Third Conference on Applied Natural Language Processing. Anais...1992.
ANDREW, J. J.; TANNIER, X. Automatic Extraction of Entities and Relation from Legal Documents. Proceedings of the Seventh Named Entities Workshop. Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018.
ANDROUTSOPOULOS, I.; LAMPOURAS, G.; GALANIS, D. Generating Natural Language Descriptions from OWL Ontologies: The Natural OWL System. Journal of Artificial Intelligence Research, v. 48, n. 1, p. 671–715, out. 2013.
ANGELIDIS, I.; CHALKIDIS, I.; KOUBARAKIS, M. Named entity recognition, linking and generation for greek legislation. Legal Knowledge and Information Systems. Anais...IOS Press, 2018.
ANSARI, L.; JI, S. Ensemble hybrid learning methods for automated depression detection. IEEE Transactions on computational Social Systems, 2022.
ANTONIO, J. D. Proposições relacionais e conversação: uma análise das relações estabelecidas nas trocas de turno. Acta Scientiarum: Human and social sciences, v. 25, p. 59, 2003.
ANTUNES, I. Lutar com palavras: coesão e coerência. [s.l.] Parábola, 2007.
ANTUNES, I. Textualidade: noções básicas e implicações pedagógicas. [s.l.] Editora: Parábola Editorial, 2017.
APPELT, D. E. Problem Solving Applied to Language Generation. Proceedings of the 18th Annual Meeting on Association for Computational Linguistics. Anais...: ACL’80.Philadelphia, Pennsylvania: Association for Computational Linguistics, 1980. Disponível em: <https://doi.org/10.3115/981436.981455>
ARAGÓN, M. E. et al. Detecting Depression in Social Media using Fine-Grained Emotions. NAACL-2019. Anais...Minneapolis, USA: Association for Computational Linguistics, 2019.
ARAUJO, P. H. L. DE et al. LeNER-Br: A Dataset for Named Entity Recognition in Brazilian Legal Text. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2018. Disponível em: <https://github.com/peluz/lener-br>
ARDILA, R. et al. Common voice: A massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670, 2019.
AREVALO, E. M.; FONTEYN, L. MacBERTh: Development and Evaluation of a Historically Pre-trained Language Model for English (1450-1950). ICON Workshop on Natural Language Processing for Digital Humanities. Anais...2021.
ARFÉ, B.; MASON, L.; FAJARDO, I. Simplifying informational text structure for struggling readers. Read Writ (2018) Volume 31, Issue 9, p. 2191–2210, 2018.
ARORA, A. K. A. A. S. A. A. Anxious Depression Prediction in Real-time Social Data. International Conference on Advances in Engineering Science Management & Technology. Anais...Dehradun, India: 2019.
Artificial intelligence and human rights. 1. ed. [s.l.] Dykinson, S.L., 2021.
ASAHARA, M.; MATSUMOTO, Y. Japanese named entity extraction with redundant morphological analysis. Proceedings of the 2003 human language technology conference of the North American chapter of the association for computational linguistics. Anais...2003.
ASCHBRENNER, J. A. N. A. A. B. A. J. T. A. K. A. Social Media and Mental Health: Benefits, Risks, and Opportunities for Research and Practice. Journal of Technology in Behavioral Science, v. 5, p. 245–257, 2020.
ASCHBRENNER, K. A. et al. A survey of online and mobile technology use at peer support agencies. Psychiatric Quarterly, p. 1–10, 2018.
ASHER, N. et al. Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus. 10th International Conference on Language Resources and Evaluation (LREC 2016). Anais...2016.
ASHER, N.; LASCARIDES, A. Logics of conversation. [s.l.] Cambridge University Press, 2003.
ASHER, N.; VIEU, L. Subordinating and coordinating discourse relations. Lingua, v. 115, n. 4, p. 591–610, 2005.
ASSI, F. M. et al. UFSCar’s Team at ABSAPT 2022: Using Syntax, Semantics and Context for Solving the Tasks. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, September 20, 2022. Anais...2022.
AUER, S. et al. DBpedia: A Nucleus for a Web of Open Data. (K. Aberer et al., Eds.)The Semantic Web. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
AVANÇO, L. V.; NUNES, M. DAS G. V. Lexicon-Based Sentiment Analysis for Reviews of Products in Brazilian Portuguese. Proceedings of the 2014 Brazilian Conference on Intelligent Systems. Anais...2014.
AVELAR, M.; FERRARI, L. Integração experiencial e dêixis locativa: O papel discursivo dos gestos. Cadernos de Estudos Linguı́sticos, v. 59, n. 1, p. 73–89, 2017.
AVERINA, M.; LEVANOVA, O.; KASATKINA, N. Named Entity Recognition for Russian Judicial Rulings Text. 2022 32nd Conference of Open Innovations Association (FRUCT). Anais...2022.
AZEVEDO, R. R. DE. Um sistema de diálogo inteligente baseado em lógica de descrições. tese de doutorado—[s.l.] Universidade Federal de Pernambuco, 2015.
AZIZ, W.; SPECIA, L. Fully Automatic Compilation of a Portuguese-English Parallel Corpus for Statistical Machine Translation. STIL 2011. Anais...Cuiabá, MT: 2011.
AZZIMONTI, M.; FERNANDES, M. Social media networks, fake news, and polarization. European Journal of Political Economy, v. 76, p. 102256, 2023.
BAADER, F. et al. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge, Reino Unido: Cambridge University Press, 2003.
BACH, N. X. et al. Reference Extraction from Vietnamese Legal Documents. Proceedings of the 10th International Symposium on Information and Communication Technology. Anais...: SoICT ’19.New York, NY, USA: Association for Computing Machinery, 2019.
BÄCKSTRÖM, T. et al. Introduction to Speech Processing. 2. ed. [s.l: s.n.].
BADENE, S. et al. Learning Multi-party Discourse Structure Using Weak Supervision. 25th International conference on computational linguistics and intellectual technologies (Dialogue 2019). Anais...2019.
BAEVSKI, A. et al. wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations., 2020. Disponível em: <https://arxiv.org/abs/2006.11477>
BAEZA-YATES, R. A.; RIBEIRO-NETO, B. A. Modern Information Retrieval-the concepts and technology behind search. 2011.
BAEZA-YATES, R.; RIBEIRO-NETO, B. Recuperação de Informação-: Conceitos e Tecnologia das Máquinas de Busca. [s.l.] Bookman Editora, 2013.
BAGGA, A.; BALDWIN, B. Algorithms for Scoring Coreference Chains. Proceedings of the first International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference. Anais...Granada, Spain: 1998.
BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural Machine Translation by Jointly Learning to Align and Translate. (Y. Bengio, Y. LeCun, Eds.)3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Anais...San Diego, California.: 2015. Disponível em: <http://arxiv.org/abs/1409.0473>
BAKER, C. F.; FILLMORE, C. J.; LOWE, J. B. The Berkeley FrameNet Project. 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1. Anais...Montreal, Quebec, Canada: Association for Computational Linguistics, ago. 1998. Disponível em: <https://aclanthology.org/P98-1013>
BAKER, C.; FELLBAUM, C.; PASSONNEAU, R. Semantic Annotation of MASC. Em: Handbook of Linguistic Annotation. [s.l.] Springer Netherlands, 2017. p. 699–717.
BALAGE FILHO, P. P.; PARDO, T. A. S.; ALUÍSIO, S. M. An Evaluation of the Brazilian Portuguese LIWC Dictionary for Sentiment Analysis. Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology. Anais...2013.
BALAGE FILHO, P. P.; PARDO, T. A. S.; NUNES, M. DAS G. V. Sumarização automática de textos científicos: Estudo de caso com o sistema gistsumm. [s.l.] Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo, 2007.
BALDWIN, T.; KIM, S. N. Multiword Expressions. Em: INDURKHYA, N.; DAMERAU, F. J. (Eds.). Handbook of Natural Language Processing. 2. ed. Boca Raton, FL, USA: CRC Press, Taylor; Francis Group, 2010. p. 267–292.
BANARESCU, L. et al. Abstract Meaning Representation for Sembanking. Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Anais...Sofia, Bulgaria: Association for Computational Linguistics, 2013. Disponível em: <http://aclweb.org/anthology/W13-2322>
BANERJEE, S.; LAVIE, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. (J. Goldstein et al., Eds.)Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Anais...Ann Arbor, Michigan: Association for Computational Linguistics, jun. 2005. Disponível em: <https://aclanthology.org/W05-0909>
BANKO, M. et al. Open Information Extraction from the Web. Proceedings of the 20th International Joint Conference on Artifical Intelligence. Anais...: IJCAI’07.San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. Disponível em: <http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9909B5C03DA1A3CCFFF4263898B69100?doi=10.1.1.74.5174&rep=rep1&type=pdf>
BANSAL, N.; AGARWAL, C.; NGUYEN, A. SAM: The Sensitivity of Attribution Methods to Hyperparameters. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Anais...2020. Disponível em: <https://doi.org/10.1109/CVPRW50498.2020.00009>
BANZA, A. P. A edição digital da História do Futuro, de António Vieira: arquivo e ferramentas. Actas da Jornada de Humanidades Digitais do CIDEHUS (to appear). Anais...2022.
BAPTISTA, J.; HAGÈGE, C.; MAMEDE, N. Identificação, classificação e normalização de expressões temporais do português: A experiência do Segundo HAREM e o futuro. Em: MOTA, C.; SANTOS, D. (Eds.). Desafios na avaliação conjunta do reconhecimento de entidades mencionadas. [s.l.] Linguateca, 2008. p. 33–54.
BAPTISTA, J.; MAMEDE, N.; REIS, S. Support Verb Constructions across the Ocean Sea. (A. Bhatia et al., Eds.)Proceedings of the 18th Workshop on Multiword Expressions @LREC2022. Anais...Marseille, France: European Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.mwe-1.6>
BARBOSA, G. C. G.; GLAUBER, R.; CLARO, D. B. Classificação de Relações Abertas Utilizando Features Independentes do Idioma. Proceedings of the 4th Symposium on Knowledge Discovery, Mining and Learning (KDMiLe). Anais...SBC, 2016.
BARRAULT, L. et al. Findings of the 2019 Conference on Machine Translation (WMT19). Proceedings of WMT. Anais...Florence, Italy: 2019.
BARRAULT, L. et al. Findings of the 2020 Conference on Machine Translation (WMT20). Proceedings of the Fifth Conference on Machine Translation. Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.wmt-1.1>
BARREIRA, R.; PINHEIRO, V.; FURTADO, V. FrameFOR Uma Base de Conhecimento de Frames Semânticos para Perı́cias de Informática (FrameFOR - a Knowledge Base of Semantic Frames for Digital Forensics)[In Portuguese]. Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology. Anais...Uberlândia, Brazil: Sociedade Brasileira de Computação, out. 2017. Disponível em: <https://aclanthology.org/W17-6620>
BARREIRO, A. et al. When Multiwords Go Bad in Machine Translation. MT Summit workshop Proceedings on Multi-word Units in Machine Translation and Transla tion Technology, p. 10, 2013.
BARRETT, M. J.; AGIC, Z.; SØGAARD, A. The Dundee Treebank. Proceedings of the Fourteenth International Workshop on Treebanks and Linguistic Theories: TLT14, p. 242–248, 2015.
BARRIERE, V.; FOURET, A. May I Check Again? A simple but efficient way to generate and use contextual dictionaries for Named Entity Recognition. Application to French Legal Texts. Proceedings of the 22nd Nordic Conference on Computational Linguistics. Anais...Turku, Finland: Linköping University Electronic Press, 2019. Disponível em: <https://aclanthology.org/W19-6136>
BARROS, D. L. P. DE. Procedimentos e recursos discursivos da conversação. Estudos de lı́ngua falada: variações e confrontos, v. 3, p. 47, 1999.
BARROS, D. L. P. DE. Introdução à Linguística II: princípios de análise. Em: FIORIN, J. L. (Ed.). 5. ed. São Paulo: Contexto, 2021. p. 187–219.
BARROS, T. S. Um modelo BERT para sumarização extrativa de textos em documentos da Polícia Federal. mathesis—[s.l.] (Mestrado em Ciências da Computação) - Programa de Pós-Graduação em Ciência da Computação da Universidade Federal de Campina Grande, 2022.
BARZILAY, R.; ELHADAD, N.; MCKEOWN, K. Sentence ordering in multidocument summarization. Proceedings of the first international conference on Human language technology research. Anais...2001.
BARZILAY, R.; LAPATA, M. Collective Content Selection for Concept-to-text Generation. Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Anais...: HLT’05.Vancouver, British Columbia, Canada: Association for Computational Linguistics, 2005. Disponível em: <https://doi.org/10.3115/1220575.1220617>
BARZILAY, R.; LAPATA, M. Aggregation via Set Partitioning for Natural Language Generation. Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. Anais...: HLT-NAACL’06.New York, New York: Association for Computational Linguistics, 2006. Disponível em: <https://doi.org/10.3115/1220835.1220881>
BASILE, V. et al. It’s the end of the gold standard as we know it. On the impact of pre-aggregation on the evaluation of highly subjective tasks. CEUR Workshop Proceedings. Anais...CEUR-WS, 2020. Disponível em: <https://iris.unito.it/handle/2318/1770149>
BASILE, V. et al. We Need to Consider Disagreement in Evaluation. Proceedings of the 1st Workshop on Benchmarking: Past, Present and Future. Anais...Online: Association for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.bppf-1.3>
BASSO, R. M. A Semântica das Relações Anafóricas entre Eventos. tese de doutorado—[s.l.] Universidade Estadual de Campinas, SP, 2009.
BATES, M. et al. Research in Knowledge Representation for Natural Language Understanding: Bolt, Beranek, and Newman. SIGART Bull., n. 79, p. 30–31, jan. 1982.
BATISTA, C.; DIAS, A. L.; NETO, N. Free resources for forced phonetic alignment in Brazilian Portuguese based on Kaldi toolkit. EURASIP Journal on Advances in Signal Processing, v. 2022, n. 1, p. 11, 19 fev. 2022.
BATISTA, H. H. et al. A comparative analysis of text embedding approach to extract named entities in Portuguese legal documents. Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional. Anais...SBC, 2021.
BAVELAS, J. B. et al. Interactive gestures. Discourse Processes, v. 15, n. 4, p. 469–489, 1992.
BAVELAS, J. B. Face-to-face dialogue: theory, research, and applications. [s.l.] Oxford University Press, 2022.
BAVELAS, J. B.; COATES, L.; JOHNSON, T. Listener responses as a collaborative process: The role of gaze. Journal of communication, v. 52, n. 3, p. 566–580, 2002.
BAVELAS, J. B.; GERWING, J. Conversational hand gestures and facial displays in face-to-face dialogue. Em: Social communication. [s.l.] Psychology Press, 2007. p. 283–308.
BAXENDALE, P. B. Machine-made index for technical literature—an experiment. IBM Journal of research and development, v. 2, n. 4, p. 354–361, 1958.
BAYYARAPU, H. S. Efficient algorithm for Context Sensitive Aggregation in Natural Language generation. Proceedings of the International Conference Recent Advances in Natural Language Processing. Anais...: RANLP’11.Hissar, Bulgaria: Association for Computational Linguistics, 2011. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/R/R11/R11-1012.pdf>
BEATTIE, G. W. Sequential Temporal Patterns of Speech and Gaze in Dialogue. Semiotica, v. 23, n. 1/2, 1978.
BECKMAN, M. E.; HIRSCHBERG, J.; SHATTUCK-HUFNAGEL, S. The original ToBI system and the evolution of the ToBI framework. Em: JUN, S.-A. (Ed.). Prosodic typology: the phonology of intonation and phrasing. Oxford: Oxford University Press, 2005. p. 9–54.
BEJČEK, E.; STRAŇÁK, P.; PECINA, P. Syntactic Identification of Occurrences of Multiword Expressions in Text using a Lexicon with Dependency Structures. Proceedings of the 9th Workshop on Multiword Expressions. Anais...Atlanta, Georgia, USA: Association for Computational Linguistics, jun. 2013. Disponível em: <https://aclanthology.org/W13-1016>
BELINKOV, Y.; GLASS, J. Analysis Methods in Neural Language Processing: A Survey. Transactions of the Association for Computational Linguistics, v. 7, p. 49–72, 2019.
BELTAGY, I.; PETERS, M. E.; COHAN, A. Longformer: The Long-Document Transformer. CoRR, v. abs/2004.05150, 2020.
BELZ, A. Last Words: That’s Nice ... What Can You Do With It? Computational Linguistics, v. 35, n. 1, mar. 2009.
BELZ, A. et al. A Systematic Review of Reproducibility Research in Natural Language Processing. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Anais...Online: Association for Computational Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.29>
BELZ, A. A Metrological Perspective on Reproducibility in NLP*. Computational Linguistics, v. 48, n. 4, p. 1125–1135, dez. 2022.
BELZ, A. et al. Non-Repeatable Experiments and Non-Reproducible Results: The Reproducibility Crisis in Human Evaluation in NLP. Findings of the Association for Computational Linguistics: ACL 2023. Anais...Toronto, Canada: Association for Computational Linguistics, jul. a2023. Disponível em: <https://aclanthology.org/2023.findings-acl.226>
BELZ, A.; THOMSON, C.; REITER, E. Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP. The Fourth Workshop on Insights from Negative Results in NLP. Anais...Dubrovnik, Croatia: Association for Computational Linguistics, b2023. Disponível em: <https://aclanthology.org/2023.insights-1.1>
BENDER, E. M. Linguistic Fundamentals for Natural Language Processing: 100 Essentials from Morphology and Syntax. Springer Nature Switzerland AG 2013: Springer Cham, 1959. p. XVII–166
BENDER, E. M. Linguistically Naïve != Language Independent: Why NLP Needs Linguistic Typology. Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous? Anais...Athens, Greece: Association for Computational Linguistics, mar. 2009. Disponível em: <https://www.aclweb.org/anthology/W09-0106>
BENDER, E. M. The Power of Linguistics - Unpacking Natural Language Processing Ethics with Emily M. Bender. [Podcast]. Disponível em: <https://www.radicalai.org/e16-emily-bender>. Acesso em: 7 abr. 2023.
BENDER, E. M. et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. Anais...: FAccT ’21.New York, NY, USA: Association for Computing Machinery, 2021. Disponível em: <https://doi.org/10.1145/3442188.3445922>
BENDER, E. M. You Are Not a Parrot And a chatbot is not a human. And a linguist named Emily M. Bender is very worried what will happen when we forget this. Disponível em: <https://nymag.com/intelligencer/article/ai-artificial-intelligence-chatbots-emily-m-bender.html>. Acesso em: 9 abr. 2023.
BENDER, E. M. Resisting Dehumanization in the Age of “AI”. Current Directions in Psychological Science, v. 0, n. 0, p. 09637214231217286, 2024.
BENDER, E. M.; FRIEDMAN, B. Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science. Transactions of the Association for Computational Linguistics, v. 6, p. 587–604, 2018.
BENDER, E. M.; KOLLER, A. Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Online: Association for Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.463>
BENGIO, Y. et al. A Neural Probabilistic Language Model. J. Mach. Learn. Res., v. 3, n. null, p. 1137–1155, mar. 2003.
BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, v. 35, n. 8, p. 1798–1828, 2013.
BENNETT, A. Interruptions and the interpretation of conversation. Annual Meeting of the Berkeley Linguistics Society. Anais...1978. Disponível em: <https://doi.org/10.1080/01638538109544513>
BENOTTI, L.; BLACKBURN, P. Grounding as a Collaborative Process. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Anais...Online: Association for Computational Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.41>
BERG-KIRKPATRICK, T.; BURKETT, D.; KLEIN, D. An Empirical Investigation of Statistical Significance in NLP. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Anais...Jeju Island, Korea: Association for Computational Linguistics, jul. 2012. Disponível em: <https://aclanthology.org/D12-1091>
BERNARDO, S. Episódio e evento na organização tópica da conversa informal. Soletras, v. 1, p. 34–49, 2001.
BERNARDO, S. Então e agora na conversa informal. Soletras, v. 5-6, p. 65–81, 2003.
BERNARDO, S. Papel das formas O? H e O? H em turnos conversacionais. Revista do GELNE, v. 7, n. 1/2, p. 73–88, 2005.
BERNARDO, S. P. Foco e ponto de vista na organização conversacional. Pesquisas em Lingüística e Literatura: Descrição, Aplicação, Ensino - ISBN: 85-906478-0-3, 2002.
BERNARDO, S. P.; VELOZO, N. DE A.; ABREU, J. C. DE. Espaços mentais na conceptualização de conversa: dois modelos em análise. Revista do GELNE, v. 23, n. 1, p. 201–216, 2021.
BERNSEN, N. O.; DYBKJÆR, H.; DYBKJÆR, L. Cooperativity in human-machine and human-human spoken dialogue. Discourse processes, v. 21, n. 2, p. 213–236, 1996.
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Exploring Word Embeddings for Unsupervised Textual User-Generated Content Normalization. Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT). Anais...Osaka, Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em: <https://aclanthology.org/W16-3916>
BERTAGLIA, T. F. C.; NUNES, M. DAS G. V. Normalização textual de conteúdo gerado por usuário. mathesis—[s.l.] Universidade de São Paulo, 2017.
BERTOLDI, A. Os Limites da Criação Automática de Léxicos Computacionais Baseados em Frames: Um Estudo Contrastivo do Frame Criminal_process (The Limits of the Automatic Creation of Frame-based Computational Lexicons: a Contrastive Study of the Criminal_process Frame) [in Portuguese]. Proceedings of the 8th Brazilian Symposium in Information and Human Language Technology. Anais...2011. Disponível em: <https://aclanthology.org/W11-4510>
BERTSCH, A. et al. Unlimiformer: Long-Range Transformers with Unlimited Length Input. CoRR, v. abs/2305.01625, 2023.
BERWICK, R. C.; CHOMSKY, N. Por que apenas nós? Linguagem e evolução. [s.l.] SciELO-Editora UNESP, 2017.
BHARDWAJ, S.; AGGARWAL, S.; MAUSAM, M. CaRB: A crowdsourced benchmark for open IE. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...2019.
BIANCHI, F.; HOVY, D. On the Gap between Adoption and Understanding in NLP. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Anais...Online: Association for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.findings-acl.340>
BIBAL, A. et al. Is Attention Explanation? An Introduction to the Debate. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Dublin, Ireland: Association for Computational Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.acl-long.269>
BICK, E. The Parsing System "Palavras": Automatic Grammatical Analysis of Portuguese in a Constraint Grammar Framework. tese de doutorado—[s.l.] Aarhus University Press, Denmark; University of Arhus, 2000.
BICK, E. A dependency-based approach to anaphora annotation. Proceedings of th 9th International Conference on Computational Processing of the Portuguese Language. Anais...Porto Alegre, Brazil: 2010.
BICK, E. S. PFN-PT: A Framenet Annotator for Portuguese: Anotação semântica automática: um novo Framenet para o português. Domínios de Linguagem, v. 16(4)7, p. 1401–1435, 2009.
BIDERMAN, M. T. C. Teoria linguística: linguística quantitativa e computacional. Rio de Janeiro: Martins Fontes, 1978.
BIKEL, D. M.; SCHWARTZ, R.; WEISCHEDEL, R. M. An algorithm that learns what’s in a name. Machine learning, v. 34, p. 211–231, 1999.
BIRD, S. NLTK: the natural language toolkit. Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions. Anais...2006.
BIRD, S. Decolonising Speech and Language Technology. Proceedings of the 28th International Conference on Computational Linguistics. Anais...Barcelona, Spain (Online): International Committee on Computational Linguistics, dez. 2020. Disponível em: <https://aclanthology.org/2020.coling-main.313>
BIRD, S.; LOPER, E. NLTK: The Natural Language Toolkit. Proceedings of the ACL Interactive Poster and Demonstration Sessions. Anais...Barcelona, Spain: Association for Computational Linguistics, jul. 2004. Disponível em: <https://aclanthology.org/P04-3031>
BIRNBAUM, M. L. et al. Role of social media and the Internet in pathways to care for adolescents and young adults with psychotic disorders and nonpsychotic mood disorders. Early Intervention in Psychiatry, v. 11, n. 4, p. 290–295, 2017.
BIRON, T. et al. Automatic detection of prosodic boundaries in spontaneous speech. PLoS ONE, v. 16, n. 5, p. 1–21, maio 2021.
BITTENCOURT JR., J. A. S. Avaliação automática de redação em língua portuguesa empregando redes neurais profundas. mathesis—[s.l.] Universidade Federal de Goiás, 2020.
BIZER, C. et al. DBpedia: A crystallization point for the Web of Data. Web Semantics, 2009.
BLACKBURN, P.; BOS, J. Representation and Inference for Natural Language: A First Course in Computational Semantics. [s.l.] Center for the Study of Language; Information, 2005.
BLEI, D. M.; MORENO, P. J. Topic Segmentation with an Aspect Hidden Markov Model. Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Anais...New York, NY, USA: Association for Computing Machinery, 2001.
BLOM, J. D. A dictionary of hallucinations. [s.l.] Springer, 2010.
BOBROW, D. G. et al. GUS, a frame-driven dialog system. Artificial Intelligence, v. 8, n. 2, p. 155–173, 1977.
BOERSMA, P.; WEENINK, D. Praat: doing phonetics by computer [Computer program]. Version 6.3.10., 2023. Disponível em: <http://www.praat.org/>
BOGANTES, D. et al. Towards Lexical Encoding of Multi-Word Expressions in Spanish Dialects. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...Portorož, Slovenia: European Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1358>
BOITO, M. Z. Simplificação lexical de substantivos e multiword expressions. Salão de Iniciação Científica (26. : 2014 out. 20-24 : UFRGS, Porto Alegre, RS), 2014.
BOJANOWSKI, P. et al. Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, v. 5, p. 135–146, 2017.
BOJAR, O. et al. Findings of the 2016 Conference on Machine Translation. Proceedings of the First Conference on Machine Translation. Anais...Berlin, Germany: Association for Computational Linguistics, 2016.
BOMMASANI, R.; CARDIE, C. Intrinsic evaluation of summarization datasets. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...2020.
BOND, F.; FOSTER, R. Linking and extending an open multilingual wordnet. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Sofia, Bulgaria: Association for Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-1133>
BOND JR., C. F.; DEPAULO, B. M. Accuracy of Deception Judgments. Personality and Social Psychology Review, v. 10, n. 3, p. 214–234, 2006.
BONIFACIO, L. H. et al. A Study on the Impact of Intradomain Finetuning of Deep Language Models for Legal Named Entity Recognition in Portuguese. (R. Cerri, R. C. Prati, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2020.
BONIFACIO, L. H. et al. mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset., 2021. Disponível em: <https://arxiv.org/abs/2108.13897>
BONIFACIO, L. H. N. Modelos Profundos de Linguagem para Reconhecimento de Entidades Nomeadas em Domínio Jurídico. mathesis—[s.l.] Master’s thesis, Universidade Federal de Mato Grosso do Sul, 2020.
BORDINO, I. et al. Garnlp: a natural language processing pipeline for garnishment documents. Information Systems Frontiers, v. 23, p. 101–114, 2021.
BORIN, E.; DONATO, F. Financial Sustainability of Digitizing Cultural Heritage: The International Platform Europeana. Journal of Risk and Financial Management, v. 16, n. 10, p. 421, 2023.
BOS, J. et al. Survey of existing interactive systems. Trindi (Task Oriented Instructional Dialogue) report, v. D1, p. 3, 1999.
BOTELHO, J. M. Conversação: Mudança e desvio de tópico conversacional. Revista Philologus, v. 17, n. 50, 2011.
BOTT, S. et al. GhoSt-PV: A Representative Gold Standard of German Particle Verbs. (M. Zock, A. Lenci, S. Evert, Eds.)Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V). Anais...Osaka, Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em: <https://aclanthology.org/W16-5318>
BOUAMOR, D.; SEMMAR, N.; ZWEIGENBAUM, P. Identifying bilingual Multi-Word Expressions for Statistical Machine Translation. (N. C. (Conference. Chair) et al., Eds.)Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). Anais...Istanbul, Turkey: European Language Resources Association (ELRA), maio 2012.
BOUAYAD-AGHA, N. et al. Content selection from semantic web data. INLG 2012 Proceedings of the Seventh International Natural Language Generation Conference. Anais...2012.
BOWMAN, S. R. et al. A large annotated corpus for learning natural language inference. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Anais...Lisbon, Portugal: Association for Computational Linguistics, set. 2015. Disponível em: <https://aclanthology.org/D15-1075>
BOXER, D. Applying sociolinguistics: Domains and face-to-face interaction. [s.l.] John Benjamins Publishing, 2002. v. 15
BRAGGAAR, A. et al. Evaluating Task-oriented Dialogue Systems: A Systematic Review of Measures, Constructs and their Operationalisations. arXiv preprint arXiv:2312.13871, 2023.
BRANDES, N. et al. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinform., v. 38, n. 8, p. 2102–2110, 2022.
BRANDOM, R. B. Articulating Reasons: An Introduction to Inferentialism. Cambridge, Massachusetts, EUA: Harvard University Press, 2001.
BRANDT, M. B. Modelagem da informação legislativa: arquitetura da informação para o processo legislativo brasileiro. tese de doutorado—[s.l.] Universidade Estadual Paulista (Unesp), 2020.
BRASCHLER, M.; PETERS, C. CLEF 2002 Methodology and Metrics. Em: PETERS, C. (Ed.). Advances in Cross-Language Information Retrieval: Results of the CLEF 2002 Evaluation Campaign. [s.l.] Springer, 2003. p. 512–525.
BRASCHLER, M.; PETERS, C. Cross-Language Evaluation Forum: Objectives, Results, Achievements. Information Retrieval, v. 7, n. 1-2, p. 7–31, 2004.
BRAUDE, D. A.; SHIMODAIRA, H.; YOUSSEF, A. B. Template-warping based speech driven head motion synthesis. Interspeech. Anais...2013.
BRAUN, H. I. Understanding Scoring Reliability: Experiments in Calibrating Essay Readers. Journal of Educational Statistics, v. 13, n. 1, p. 1–18, 1988.
BREEN, J. JMdict: a Japanese-Multilingual Dictionary. Proceedings of the Workshop on Multilingual Linguistic Resources. Anais...Geneva, Switzerland: COLING, 2004. Disponível em: <https://aclanthology.org/W04-2209>
BREITFELLER, L. et al. Finding Microaggressions in the Wild: A Case for Locating Elusive Phenomena in Social Media Posts. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...2019.
BRENNAN, S. E.; GALATI, A.; KUHLEN, A. K. Two minds, one dialog: Coordinating speaking and understanding. Em: Psychology of learning and motivation. [s.l.] Elsevier, 2010. v. 53p. 301–344.
BREWSTER, C.; WILKS, Y. Ontologies, taxonomies, thesauri:learning from texts. (M. Deegan, Ed.)Proceedings of Use of Computational Linguistics in the Extraction of Keyword Information from Digital Library Content Workshop. Anais...2004. Disponível em: <http://www.cbrewster.com/papers/KeyWord_FMO.pdf>
BRICIU, A.; LUPEA, M. Studying the language of mental illness in Romanian social media. IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP). Anais...2018.
BRIDGEMAN, B. Handbook of automated essay evaluation: Current applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 221–232.
BRILL, E. A Simple Rule-Based Part of Speech Tagger. Proceedings of the Third Conference on Applied Natural Language Processing. Anais...: ANLC ’92.USA: Association for Computational Linguistics, 1992. Disponível em: <https://doi.org/10.3115/974499.974526>
BRIN, S. Extracting patterns and relations from the world wide web. International workshop on the world wide web and databases. Anais...Springer, 1998.
BRITO, M. et al. CDJUR-BR - Uma Coleção Dourada do Judiciário Brasileiro com Entidades Nomeadas Refinadas. Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Porto Alegre, RS, Brasil: SBC, 2023. Disponível em: <https://github.com/mauriciobritojr/CDJUR-BR>
BRITTO, H.; FINGER, M.; GALVES, C. Computational and linguistic aspects of the construction of The Tycho Brahe Parsed Corpus of Historical Portuguese. Romanistische Korpuslinguistik, Korpora und gesprochene Sprache, Romance Corpus Linguistics, Corpora and Spoken Language, ScriptOralia, v. 126., 2002.
BROWN, P. et al. A statistical approach to language translation. Proceedings of the 12th conference on Computational linguistics -. Anais...Budapest, Hungry: Association for Computational Linguistics, 1988. Disponível em: <http://portal.acm.org/citation.cfm?doid=991635.991651>. Acesso em: 10 jun. 2020
BROWN, T. B. et al. Language Models are Few-Shot Learners. (H. Larochelle et al., Eds.)Advances in Neural Information Processing Systems. Anais...Curran Associates, Inc., 2020. Disponível em: <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html>
BRUM, H.; NUNES, M. DAS G. V. Building a Sentiment Corpus of Tweets in Brazilian Portuguese. (N. C. (Conference chair) et al., Eds.)Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Anais...Miyazaki, Japan: European Language Resources Association (ELRA), mar. 2018.
BRUNEAU, T. J. Communicative silences: Forms and functions. Journal of communication, v. 23, n. 1, p. 17–46, 1973.
BRUNETTE, M. et al. Use of smartphones, computers and social media among people with SMI: opportunity for intervention. Community Mental Health Journal, p. 1–6, 2019.
BUCCI, S.; SCHWANNAUER, M.; BERRY, N. The digital revolution and its impact on mental health care. Psychology and Psychotherapy: Theory, Research and Practice, v. 92, n. 2, p. 277–297, 2019.
BUCKLEY, C.; VOORHEES, E. Evaluating Evaluation Measure Stability. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Anais...2000. Disponível em: <https://sigir.org/wp-content/uploads/2017/06/p235.pdf>
BUCKLEY, C.; VOORHEES, E. M. Evaluating evaluation measure stability. ACM SIGIR Forum. Anais...ACM New York, NY, USA, 2017.
BUENO, R. O. et al. Overview of the Task on Irony Detection in Spanish Variants. Proceedings of the Iberian Languages Evaluation Forum co-located with 35th Conference of the Spanish Society for Natural Language Processing. Anais...2019.
BULHÕES, J. DO S. U. et al. Levantamento, análise e descrição de elementos paralinguı́sticos do português espontâneo. mathesis—[s.l.] Universidade Federal do Pará, 2006.
BUOLAMWINI, J.; GEBRU, T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. (S. A. Friedler, C. Wilson, Eds.)Proceedings of the 1st Conference on Fairness, Accountability and Transparency. Anais...: Proceedings of Machine Learning Research.PMLR, 2018. Disponível em: <https://proceedings.mlr.press/v81/buolamwini18a.html>
BURDISSO, S. G.; ERRECALDE, M.; MONTES-Y-GÓMEZ, M. t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams. Pattern Recognition Letters, v. 138, p. 130–137, 2020.
BURRISS, L. L. Attribution in network radio news: A cross-network analysis. Journalism Quarterly, v. 65, n. 3, p. 690–694, 1988.
BURSTEIN, J. Opportunities for Natural Language Processing Research in Education. (A. Gelbukh, Ed.)Computational Linguistics and Intelligent Text Processing. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
BUTNARIU, C. et al. SemEval-2 Task 9: The Interpretation of Noun Compounds Using Paraphrasing Verbs and Prepositions. Proceedings of the 5th International Workshop on Semantic Evaluation. Anais...Uppsala, Sweden: Association for Computational Linguistics, jul. 2010. Disponível em: <https://aclanthology.org/S10-1007>
CABRAL, B.; SOUZA, M.; CLARO, D. B. PortNOIE: A Neural Framework for Open Information Extraction for the Portuguese Language. International Conference on Computational Processing of the Portuguese Language. Anais...Springer, 2022.
CABRAL, L. et al. FakeWhastApp.BR: NLP and Machine Learning Techniques for Misinformation Detection in Brazilian Portuguese WhatsApp Messages. Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1. Anais...2021.
CABRÉ, M. T. La terminología: representación y comunicación. [s.l.] Editora: Documenta Universitaria, 1999.
CABRÉ, M. T. A Terminologia, uma disciplina em evolução: passado, presente e alguns elementos de futuro. Debate Terminológico. ISSN: 1813-1867, n. 01, 2005.
CABRERA-DIEGO, L. A.; GHEEWALA, A. Jus Mundi at SemEval-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System. Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023). Anais...Toronto, Canada: Association for Computational Linguistics, jul. 2023.
CAÇÃO, F. N. et al. DEEPAGÉ: Answering Questions in Portuguese About the Brazilian Environment. (A. Britto, K. Valdivia Delgado, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2021.
CAFFERKEY, C.; HOGAN, D.; GENABITH, J. VAN. Multi-word units in treebank-based probabilistic parsing and generation. Proc. of RANLP 2007. Anais...Borovets: 2007.
CALLISON-BURCH, C. et al. Findings of the 2010 joint workshop on statistical machine translation and metrics for machine translation. Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR. Anais...2010.
CALZOLARI, N. et al. Towards best Practice for Multiword Expressions in Computational Lexicons. proc of the Third lrecconf (LREC 2002). Anais...Las Palmas, Canary Islands, Spain: elra, 2002.
CAMERON, H. F.; GONÇALVES, M. F.; QUARESMA, P. Linguistic and orthographical classic Portuguese variants Challenges for NLP. Proceedings of the 14th International Conference on the Computational Processing of Portuguese. Anais...2020.
CAMERON, H.; OLIVAL, F.; VIEIRA, R. Planear a normalização automática: tipologia de variação gráfica do corpus das Memórias Paroquiais (1758). LaborHistórico, v. 9, n. 1, p. 52234, 2023.
CAMPOS, J. et al. Towards Fully Automated News Reporting in Brazilian Portuguese. Anais do XVII Encontro Nacional de Inteligência Artificial e Computacional. Anais...Porto Alegre, RS, Brasil: SBC, 2020. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/12158>
CAMPRESS (ED.). Cambridge International Dictionary of Phrasal Verbs. Cambridge, UK: campress, 1997.
CANAVILHAS, J. Webjornalismo: Da pirâmide invertida à pirâmide deitada. Aprender, n. 32, p. 58–65, 2012.
CANDIDO JUNIOR, A. Análise bidirecional da língua na simplificação sintática em textos de português voltada à acessibilidade digital. ICMC - USP São Carlos: Biblioteca Digital USP, 2013.
CANDIDO JUNIOR, A. et al. CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese. CoRR, v. abs/2110.15731, 2021.
CANDIDO JUNIOR, A. et al. CORAA ASR: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese. Language Resources & Evaluation, 2022.
CANDIDO-JUNIOR, A.; OLIVEIRA, M. DE; ALUÍSIO, S. M. Simplifica: um Sistema Web de Autoria de Textos Simplificados. Simpósio Brasileiro de Sistemas Multimídia e Web (Webmedia 2009) v.2, p. 55–58, 2009.
CANDITO, M. et al. A French corpus annotated for multiword expressions and named entities. Journal of Language Modelling, v. 8, n. 2, p. 415–479, 2021.
CANDITO, M.; CONSTANT, M. Strategies for Contiguous Multiword Expression Analysis and Dependency Parsing. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Baltimore, Maryland: Association for Computational Linguistics, jun. 2014. Disponível em: <https://aclanthology.org/P14-1070>
CAP, F. et al. How to Produce Unseen Teddy Bears: Improved Morphological Processing of Compounds in SMT. Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Anais...Goteborg, Sweden: 2014.
CARAPINHA, C.; PLAG, C. A interação verbal em sala de audiências: turn design. Actas do XIII Congreso Internacional de Lingüı́stica Xeral: Vigo, 13-15 de xuño de 2018. Anais...Universidade de Vigo, 2018. Disponível em: <http://cilx2018.uvigo.gal/actas/pdf/661468.pdf>
CARDELLINO, C. et al. Legal NERC with ontologies, Wikipedia and curriculum learning. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Anais...Valencia, Spain: Association for Computational Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/E17-2041>
CARDOSO, N. Avaliação de Sistemas de Reconhecimento de Entidades Mencionadas. mathesis—[s.l.] Faculdade de Engenharia da Universidade do Porto, 2006.
CARDOSO, N. Rembrandt - a named-entity recognition framework. Proceedings of the Eighth International Conference on Language Resources and Evaluation. Anais...Istanbul, Turkey: 2012. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2012/summaries/409.html>
CARDOSO, P. C. F. et al. CSTNews-a discourse-annotated corpus for single and multi-document summarization of news texts in Brazilian Portuguese. Proceedings of the 3rd RST Brazilian Meeting. Anais...2011.
CARDOSO, P. C. F. Exploração de métodos de sumarização automática multidocumento com base em conhecimento semântico-discursivo. tese de doutorado—[s.l.] (Doutorado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2014.
CARL, M.; WAY, A. (EDS.). Recent Advances in Example-Based Machine Translation. [s.l.] Springer Netherlands, 2003.
CARLSON, L.; MARCU, D. Discourse tagging reference manual. ISI Technical Report ISI-TR-545, v. 54, n. 2001, p. 56, 2001.
CARMO, D. et al. PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data. CoRR, v. abs/2008.09144, 2020.
CARNEIRO, F. C. A. D. F. A. F. J. N. A. V. Early Detection of Depression: Social Network Analysis and Random Forest Techniques. J Med Internet Res, v. 21, n. 6, p. e12554, 2019.
CARPINETO, C.; ROMANO, G. A survey of automatic query expansion in information retrieval. Acm Computing Surveys (CSUR), v. 44, n. 1, p. 1–50, 2012.
CARPUAT, M.; DIAB, M. Task-based Evaluation of Multiword Expressions: a Pilot Study in Statistical Machine Translation. Proceedings of HLT: The 2010 Annual Conference of the North American Chapter of the ACL (NAACL 2003). Anais...Los Angeles, California: ACL, jun. 2010.
CARROLL, J. et al. Practical Simplification of English Newspaper Text to Assist Aphasic Readers. In Proc. of AAAI-98 Workshop on Integrating Artificial Intelligence and Assistive Technology. Anais...1998.
CARVALHO, F.; SANTOS, G. DOS; GUEDES, G. P. AffectPT-br: an Affective Lexicon based on LIWC 2015. Proceedings of the 37th International Conference of the Chilean Computer Science Society. Anais...2018.
CARVALHO, G.; MATOS, D. M. DE; ROCIO, V. IdSay: Question Answering for Portuguese. (C. Peters et al., Eds.)Evaluating Systems for Multilingual and Multimodal Information Access. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, a2009.
CARVALHO, M. W. P. L.; ACIOLI, M. D. Entre falas simultâneas, tomadas de turno e sobreposição de vozes: quem tem a palavra no debate? Revista do GELNE, v. 19, p. 155–165, 2017.
CARVALHO, P. et al. Clues for Detecting Irony in User-Generated Contents: Oh...!! It’s "so Easy" ;-). Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion. Anais...b2009.
CARVALHO, P.; SILVA, M. J. SentiLex-PT 02. https://b2share.eudat.eu, 2017. Disponível em: <https://b2share.eudat.eu/records/93ab120efdaa4662baec6adee8e7585f>
CASANOVA, E. Síntese de voz aplicada ao português brasileiro usando aprendizado profundo. {B.S.} thesis—[s.l.] Universidade Tecnológica Federal do Paraná, 2019.
CASANOVA, E. et al. TTS-Portuguese Corpus: a corpus for speech synthesis in Brazilian Portuguese. Language Resources and Evaluation, v. 56, n. 3, p. 1043–1055, 2022.
CASANOVA, E.; SHULBY, C. D.; ALUÍSIO, S. M. Deep learning approaches for speech synthesis and speaker verification. Acoustic communication: an interdisciplinary approach, 2021.
CASELI, H. DE M. et al. Building a Brazilian Portuguese parallel corpus of original and simplified texts. Advances in Computational Linguistics, Research in Computer Science (CICLing-2009), v. 41, p. 59–70, 2009.
CASELI, H. DE M.; FREITAS, C.; VIOLA, R. Processamento de Linguagem Natural. Em: Tópicos em Gerenciamento de Dados e Informações: Minicursos do SBBD 2022. [s.l.] Sociedade Brasileira de Computação, 2022. p. 1–28.
CÁSSIA ALVES, V. DE et al. College students-in-the-loop for their mental health: a case of AI and humans working together to support well-being. Interaction Design and Architecture(s), n. 59, p. 79–94, 2024.
CASTANO, A.; CASACUBERTA, F. A connectionist approach to machine translation. 5th European Conference on Speech Communication and Technology (Eurospeech 1997). Anais...ISCA, set. 1997. Disponível em: <http://dx.doi.org/10.21437/eurospeech.1997-50>
CASTILHO, A. T. DE. O português culto falado no Brasil: história do Projeto NURC. Em: PRETI, D.; URBANO, H. (Eds.). A linguagem falada culta na cidade de São Paulo. São Paulo, SP: TAQ/Fapesp, 1990. v. 4 – Estudosp. 141–292.
CASTILHO, A. T. DE. Gramática do Português Brasileiro: fundamentos, perspectivas. Cadernos de Linguística, v. 2, n. 1, p. e252, abr. a2021.
CASTILHO, S. et al. Does post-editing increase usability? A study with Brazilian Portuguese as Target Language. Proceedings of the 17th annual conference of the European association for machine translation. Anais...2014.
CASTILHO, S. et al. A comparative quality evaluation of PBSMT and NMT using professional translators. Proceedings of Machine Translation Summit XVI: Research Track. Anais...a2017.
CASTILHO, S. et al. Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, v. 108, n. 1, p. 109–120, jun. b2017.
CASTILHO, S. et al. Approaches to Human and Machine Translation Quality Assessment. Em: Translation Quality Assessment: From Principles to Practice. Machine Translation: Technologies e Applications. [s.l.] Springer International Publishing, 2018. v. 1p. 9–38.
CASTILHO, S. et al. Editors’ foreword to the special issue on human factors in neural machine translation. Machine Translation, v. 33, n. 1–2, p. 1–7, maio a2019.
CASTILHO, S. On the Same Page? Comparing IAA in Sentence and Document Level Human MT Evaluation. Proceedings of the Fifth Conference on Machine Translation. Anais...Association for Computational Linguistics, nov. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.wmt-1.137>
CASTILHO, S. Towards Document-Level Human MT Evaluation: On the Issues of Annotator Agreement, Effort and Misevaluation. Proceedings of the Workshop on Human Evaluation of NLP Systems. Anais...Association for Computational Linguistics, abr. b2021. Disponível em: <https://www.aclweb.org/anthology/2021.humeval-1.4>
CASTILHO, S. et al. DELA Corpus - A Document-Level Corpus Annotated with Context-Related Issues. Proceedings of the Sixth Conference on Machine Translation. Anais...Online: Association for Computational Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.wmt-1.63>
CASTILHO, S. How Much Context Span is Enough? Examining Context-Related Issues for Document-level MT. Proceedings of the Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.323>
CASTILHO, S. et al. Translation Systems Care for Context? What About a GPT Model? Proceedings of the 24th Annual Conference of the European Association for Machine Translation. Anais...Tampere, Finland: EAMT, 2023. Disponível em: <https://events.tuni.fi/uploads/2023/06/11678752-proceedings-eamt2023.pdf>
CASTILHO, S.; RESENDE, N. Post-Editese in Literary Translations. Information, v. 13, n. 2, p. 66, 2022.
CASTILHO, S.; RESENDE, N.; MITKOV, R. What Influences the Features of Post-editese? A Preliminary Study. Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019). Anais...Varna, Bulgaria: Incoma Ltd., Shoumen, Bulgaria, set. b2019. Disponível em: <https://aclanthology.org/W19-8703>
CASTRO FERREIRA, T. et al. NeuralREG: An end-to-end approach to referring expression generation. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Melbourne, Australia: Association for Computational Linguistics, 2018. Disponível em: <http://aclweb.org/anthology/P18-1182>
CASTRO FERREIRA, T. et al. Neural data-to-text generation: A comparison between pipeline and end-to-end architectures. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...Hong Kong, China: Association for Computational Linguistics, nov. 2019. Disponível em: <https://www.aclweb.org/anthology/D19-1052>
CASTRO FERREIRA, T. et al. Evaluating Recognizing Question Entailment Methods for a Portuguese Community Question-Answering System about Diabetes Mellitus. (R. Mitkov, G. Angelova, Eds.)Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021). Anais...Held Online: INCOMA Ltd., set. 2021. Disponível em: <https://aclanthology.org/2021.ranlp-1.28>
CASTRO FERREIRA, T.; PARABONI, I. Referring Expression Generation: Taking Speakers’ Preferences into Account. Em: SOJKA, P. et al. (Eds.). Text, Speech and Dialogue. Lecture Notes em Computer Science. [s.l.] Springer International Publishing, 2014a. v. 8655p. 539–546.
CASTRO FERREIRA, T.; PARABONI, I. Classification-based Referring Expression Generation. Computational Linguistics and Intelligent Text Processing (CICLing-2014), Lecture Notes in Computer Science 8403. Anais...Kathmandu, Nepal: Springer, b2014.
CASTRO, P. Aprendizagem profunda para reconhecimento de entidades nomeadas em domínio jurídico. mathesis—[s.l.] Master’s thesis, Universidade Federal de Goiás, 2019.
CASTRO, P. V. Q. DE; SILVA, N. F. F. DA; SOARES, A. DA S. Portuguese Named Entity Recognition Using LSTM-CRF. (A. Villavicencio et al., Eds.)Proceedings of the 13th International Conference on the Computational Processing of the Portuguese Language. Anais...2018.
CAVALIERE, P.; ROMEO, G. From Poisons to Antidotes: Algorithms as Democracy Boosters. European Journal of Risk Regulation, v. 13, n. 3, p. 421–442, 2022.
CERVONE, A.; STEPANOV, E.; RICCARDI, G. Coherence Models for Dialogue. Proc. Interspeech 2018. Anais...2018. Disponível em: <https://10.21437/Interspeech.2018-2446>
ÇETINDAĞ, C.; YAZICIOĞLU, B.; KOÇ, A. Named-entity recognition in Turkish legal texts. Natural Language Engineering, p. 1–28, 2022.
CHAKRABORTY, A. et al. Stop Clickbait: Detecting and preventing clickbaits in online news media. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Anais...2016.
CHALAMALASETTI, K. et al. clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents. (H. Bouamor, J. Pino, K. Bali, Eds.)Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Anais...Singapore: Association for Computational Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.689>
CHALKIDIS, I. et al. LEGAL-BERT: The Muppets straight out of Law School. Findings of the Association for Computational Linguistics: EMNLP 2020. Anais...Online: Association for Computational Linguistics, nov. 2020.
CHALKIDIS, I. et al. Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Anais...Online: Association for Computational Linguistics, abr. 2021.
CHALKIDIS, I.; ANDROUTSOPOULOS, I. A deep learning approach to contract element extraction. Em: Legal knowledge and information systems. [s.l.] IOS Press, 2017. p. 155–164.
CHALKIDIS, I.; ANDROUTSOPOULOS, I.; ALETRAS, N. Neural Legal Judgment Prediction in English. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Anais...Association for Computational Linguistics, 2019.
CHALKIDIS, I.; ANDROUTSOPOULOS, I.; MICHOS, A. Extracting Contract Elements. Proceedings of the 16th Edition of the International Conference on Articial Intelligence and Law. Anais...: ICAIL ’17.New York, NY, USA: Association for Computing Machinery, 2017.
CHALL, J. S.; DALE, E. Readability revisited: the new Dale-Chall readability formula. [s.l.] Brookline Books, 1995.
CHALMERS, D. J. Syntactic transformations on distributed representations. Connectionist Natural Language Processing: Readings from Connection Science, p. 46–55, 1992.
CHANDRAN, R. Indigenous groups in NZ, US fear colonisation as AI learns their languages. Disponível em: <https://www.context.news/ai/nz-us-indigenous-fear-colonisation-as-bots-learn-their-languages>. Acesso em: 7 abr. 2023.
CHANDRASEKAR, R.; DORAN, C.; SRINIVAS, B. Motivations and methods for text simplification. Proceedings of the 16th International Conference on Computational Linguistics (COLING), p. 1041–1044, 1996.
CHANG, K.-W. et al. Illinois-Coref: The UI system in the CoNLL-2012 shared task. Joint Conference on EMNLP and CoNLL-Shared Task. Anais...Association for Computational Linguistics, 2012.
CHARLES, A. C.; RUBACK, L.; OLIVEIRA, J. Fakepedia Corpus: A Flexible Fake News Corpus in Portuguese. Computational Processing of the Portuguese Language: 15th International Conference, PROPOR 2022, Fortaleza, Brazil, March 21–23, 2022, Proceedings. Anais...Berlin, Heidelberg: Springer-Verlag, 2022. Disponível em: <https://doi.org/10.1007/978-3-030-98305-5_4>
CHARPENTIER, F.; STELLA, M. Diphone synthesis using an overlap-add technique for speech waveforms concatenation. ICASSP’86. IEEE International Conference on Acoustics, Speech, and Signal Processing. Anais...IEEE, 1986.
CHAVARRO, J. et al. FakeTrueBR: Um corpus brasileiro de notícias falsas. Anais da XVIII Escola Regional de Banco de Dados. Anais...Porto Alegre, RS, Brasil: SBC, 2023. Disponível em: <https://sol.sbc.org.br/index.php/erbd/article/view/24352>
CHE, X. et al. Punctuation Prediction for Unsegmented Transcript Based on Word Vector. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...Portorož, Slovenia: European Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1103>
CHEN, A.; CHEN, D. O. Simulation of a machine learning enabled learning health system for risk prediction using synthetic patient data. Scientific Reports, v. 12, n. 1, p. 17917, out. 2022.
CHEN, K.; HASEGAWA-JOHNSON, M. A. How prosody improves word recognition. Speech Prosody 2004. Anais...2004.
CHEN, L.-W.; RUDNICKY, A. Exploring Wav2vec 2.0 Fine Tuning for Improved Speech Emotion Recognition. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Anais...IEEE, 2023.
CHEN, P. P. The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst., v. 1, n. 1, p. 9–36, 1976.
CHEN, Y. et al. Joint Entity and Relation Extraction for Legal Documents with Legal Feature Enhancement. Proceedings of the 28th International Conference on Computational Linguistics. Anais...Barcelona, Spain (Online): International Committee on Computational Linguistics, dez. 2020.
CHEN, Y.; CONROY, N. J.; RUBIN, V. L. Misleading Online Content: Recognizing Clickbait as "False News". Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection. Anais...: WMDD ’15.New York, NY, USA: Association for Computing Machinery, 2015. Disponível em: <https://doi.org/10.1145/2823465.2823467>
CHILD, R. et al. Generating Long Sequences with Sparse Transformers. CoRR, v. abs/1904.10509, 2019.
CHINCHOR, N. The statistical significance of the MUC-4 results. Proceedings of the Fourth Message Understanding Conference (MUC-4). Anais...Morgan Kaufmann Publ., 1992. Disponível em: <https://dl.acm.org/doi/pdf/10.3115/1072064.1072068>
CHISHOLM, A.; RADFORD, W.; HACHEY, B. Learning to generate one-sentence biographies from Wikidata. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Anais...: EACL’17.Valencia, Spain: Association for Computational Linguistics, 2017. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1060.pdf>
CHO, K. et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. (A. Moschitti, B. Pang, W. Daelemans, Eds.)Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL. Anais...ACL, 2014. Disponível em: <https://doi.org/10.3115/v1/d14-1179>
CHOUDHURY, M. D. et al. Predicting Depression via Social Media. International AAAI Conference on Web and Social Media (ICWSM). Anais...AAAI, 2013.
CHOUEKA, Y. Looking for Needles in a Haystack or Locating Interesting Collocational Expressions in Large Textual Databases. (C. Fluhr, D. E. Walker, Eds.)Proceedings of the 2nd International Conference on Computer-Assisted Information Retrieval (Recherche d’Information et ses Applications - RIA 1988). Anais...Cambridge, MA, USA: CID, 1988.
CHOVIL, N. Discourse-oriented facial displays in conversation. Research on Language & Social Interaction, v. 25, n. 1-4, p. 163–194, 1991.
CHOWDHERY, A. et al. PaLM: Scaling Language Modeling with Pathways. CoRR, v. abs/2204.02311, 2022.
CHRISMAN, L. Learning recursive distributed representations for holistic computation. Connection Science, v. 3, n. 4, p. 345–366, 1991.
CHRISTIANO, P. F. et al. Deep Reinforcement Learning from Human Preferences. (I. Guyon et al., Eds.)Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Anais...2017. Disponível em: <https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html>
CHUNG, Y.-A.; GLASS, J. Speech2Vec: A Sequence-to-Sequence Framework for Learning Word Embeddings from Speech. Proc. Interspeech 2018. Anais...2018.
CHURCH, K. How many multiword expressions do people know? tslp Special Issue on mwes: from theory to practice and use, part 1 (TSLP), v. 10, n. 2, 2013.
CIAMPAGLIA, G. L. et al. Computational fact checking from knowledge networks. PloS one, v. 10, n. 6, p. e0128193, 2015.
CIERI, C.; MILLER, D.; WALKER, K. The Fisher Corpus: a Resource for the Next Generations of Speech-to-Text. Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC04). Anais...Lisbon, Portugal: European Language Resources Association (ELRA), 2004. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/767.pdf>
CIGNARELLA, A. T. et al. Overview of the EVALITA 2018 Task on Irony Detection in Italian Tweets (IronITA). Proceedings of the Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2018) co-located with the Fifth Italian Conference on Computational Linguistics (CLiC-it 2018). Anais...2018.
CLARK, E. V. Conversational repair and the acquisition of language. Discourse Processes, v. 57, n. 5-6, p. 441–459, 2020.
CLARK, H. H. Arenas of language use. [s.l.] University of Chicago Press, 1992.
CLARK, H. H. Using language. [s.l.] Cambridge University Press, 1996b.
CLARK, H. H. Communities, commonalities, and communication. Em: Rethinking linguistic relativity. [s.l.] Cambridge University Press, 1996a. v. 17p. 324–355.
CLARK, H. H. How to talk with children. Em: Language in Interaction. [s.l.] John Benjamins, 2014. p. 333–352.
CLARK, H. H.; BRENNAN, S. E. Grounding in communication. Em: Perspectives on socially shared cognition. [s.l.] American Psychological Association, 1991. p. 127–149.
CLARK, H. H.; SCHAEFER, E. F. Collaborating on contributions to conversations. Language and cognitive processes, v. 2, n. 1, p. 19–41, 1987.
CLARK, H. H.; TREE, J. E. F. Using uh and um in spontaneous speaking. Cognition, v. 84, n. 1, p. 73–111, 2002.
CLARK, H. H.; WILKES-GIBBS, D. Referring as a collaborative process. Cognition, v. 22, n. 1, p. 1–39, 1986.
CLARK, K. et al. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. 8th International Conference on Learning Representations, ICLR 2020. Anais...Addis Ababa, Ethiopia: OpenReview.net, abr. 2020. Disponível em: <https://openreview.net/forum?id=r1xMH1BtvB>
CLARKE, D. J. B. et al. FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources. Cell Systems, v. 9, n. 5, p. 417–421, 2019.
CLEM, S. Post-Truth and Vices Opposed to Truth. v. 37, n. 2, p. 97–116, 2017.
CLERWALL, C. Enter the Robot Journalist. Journalism Practice, v. 8, n. 5, p. 519–531, 2014.
CLIFTON, A. et al. 100,000 podcasts: A spoken English document corpus. Proceedings of the 28th International Conference on Computational Linguistics. Anais...2020.
COECKELBERGH, M. Artificial Intelligence, Responsibility Attribution, and a Relational Justification of Explainability. Science and Engineering Ethics, v. 26, p. 2051–2068, 2020.
COELHO DA SILVA, T.; FERNANDES DE MACÊDO, J.; MAGALHÃES, R. Tracking the Evolution of Covid-19 Symptoms through Clinical Conversations. Proceedings of the 5th Clinical Natural Language Processing Workshop. Anais...Toronto, Canada: Association for Computational Linguistics, jul. 2023. Disponível em: <https://aclanthology.org/2023.clinicalnlp-1.6>
COELHO, G. et al. Information Extraction in the Legal Domain: Traditional Supervised Learning vs. ChatGPT. INSTICC; SciTePress, 2024.
COELHO, G. E.; SERRALHEIRO, A. J.; NETO, J. P. A spoken dialog system speech interface based on a microphone array. Computational Processing of the Portuguese Language: 8th International Conference, PROPOR 2008 Aveiro, Portugal, September 8-10, 2008 Proceedings 8. Anais...Springer, 2008. Disponível em: <https://doi.org/10.1007/978-3-540-85980-2_3>
COELLO, J. M. A.; JUNQUEIRA, B. A. Automatic Analysis of Facebook Posts and Comments Written in Brazilian Portuguese. International Journal for Innovation Education and Research, 2019.
COHAN, A. et al. SMHD: a Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions. COLING-2018. Anais...Santa Fe, USA: Association for Computational Linguistics, 2018.
COHEN, A. D. et al. LaMDA: Language Models for Dialog Applications. Em: arXiv. [s.l: s.n.].
COHEN, J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, v. 20, n. 1, p. 37–46, 1960.
COHEN, K. B. et al. Three Dimensions of Reproducibility in Natural Language Processing. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Anais...Miyazaki, Japan: European Language Resources Association (ELRA), 2018. Disponível em: <https://aclanthology.org/L18-1025>
COHEN, P. R.; HOWE, A. E. How Evaluation Guides AI Research: The Message Still Counts More than the Medium. AI Magazine, v. 9, n. 4, p. 35, 1988.
COLEMAN, M.; LIAU, T. L. A computer readability formula designed for machine scoring. Journal of Applied Psychology, v. 60, p. 283–284, 1975.
COLLOBERT, R.; WESTON, J. A unified architecture for natural language processing: deep neural networks with multitask learning. (W. W. Cohen, A. McCallum, S. T. Roweis, Eds.)Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008. Anais...: ACM International Conference Proceeding Series.ACM, 2008. Disponível em: <https://doi.org/10.1145/1390156.1390177>
COLLOVINI, S. et al. Summ-it: Um Corpus Anotado com Informações Discursivas Visando a Sumarização Automática. Proceedings of V Workshop em Tecnologia da Informação e da Linguagem Humana. Anais...Rio de Janeiro, Brasil: 2007.
COLLOVINI, S. et al. Extraction of Relation Descriptors for Portuguese Using Conditional Random Fields. Proceedings of the 14th Ibero-American Conference on Advances in Artificial Intelligence. Anais...Santiago de Chile: 2014.
COLLOVINI, S. et al. IberLEF 2019 Portuguese Named Entity Recognition and Relation Extraction Tasks. Proceedings of the Iberian Languages Evaluation Forum co-located with 35th Conference of the Spanish Society for Natural Language Processing. Anais...2019. Disponível em: <http://ceur-ws.org/Vol-2421/NER\_Portuguese\_overview.pdf>
COMMISSION, E. Proposal for a Regulation laying down harmonised rules on artificial intelligence. Disponível em: < https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence >. Acesso em: 28 ago. 2023.
CONCEIÇÃO, M. C.; ZANOLA, M. T. Terminologia e mediação linguı́stica: métodos, práticas e atividades. Universidade do Algarve Editora, 2020.
CONEGLIAN, C. S.; SANTAREM SEGUNDO, J. E. Europeana no Linked Open Data: conceitos de Web Semântica na dimensão aplicada das Humanidades Digitais. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, v. 22, n. 48, p. 88–99, 2017.
CONNEAU, A. et al. Unsupervised cross-lingual representation learning at scale. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...2020.
CONNEAU, A.; LAMPLE, G. Cross-Lingual Language Model Pretraining. Em: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.
CONROY, N. K.; RUBIN, V. L.; CHEN, Y. Automatic deception detection: Methods for finding fake news. Proceedings of the Association for Information Science and Technology, v. 52, n. 1, p. 1–4, 2015.
CONSOLI, B. S. et al. Embeddings for Named Entity Recognition in Geoscience Portuguese Literature. Proceedings of The 12th Language Resources and Evaluation Conference. Anais...2020.
CONSORTIUM, L. D. ACE (Automatic Content Extraction) English Annotation Guidelines for Events. Version, n. 5.4.3, 2005.
CONSTANT, M. et al. Multiword Expression Processing: A Survey. Computational Linguistics, 2017.
CONSTANT, M.; NIVRE, J. A Transition-Based System for Joint Lexical and Syntactic Analysis. Proc. of ACL 2016. Anais...Berlin: 2016.
COPESTAKE, A. et al. Minimal recursion semantics: An introduction. Research on language and computation, v. 3, p. 281–332, 2005.
COPPERSMITH, G. et al. CLPsych 2015 Shared Task: Depression and PTSD on Twitter. Second Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Anais...Denver, USA: Association for Computational Linguistics, 2015.
CORDEIRO, P. R.; PINHEIRO, V. Um corpus de notıcias falsas do twitter e verificaçao automática de rumores em lıngua portuguesa. Proceedings of the Symposium in Information and Human Language Technology. Anais...2019.
CORDEIRO, S. R. et al. Unsupervised Compositionality Prediction of Nominal Compounds. Computational Linguistics, v. 45, n. 1, p. 1–57, 2019.
COREIXAS, T. Resolução De Correferência E Categorias De Entidades Nomeadas. Dissertação de Mestrado, Pontifı́cia Universidade Católica do Rio Grande do Sul, 2010.
CORMEN, T. et al. Introduction to Algorithms. Em: 2. ed. [s.l.] MIT Press; McGraw-Hill, 2001.
CORNU, G. Linguistique juridique. [s.l: s.n.].
CORRÊA, N. K. et al. Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance. Patterns, v. 4, n. 10, p. 100857, 2023.
CORRÊA, U. B. Análise de sentimento baseada em aspectos usando aprendizado profundo: uma proposta aplicada à língua portuguesa. tese de doutorado—[s.l.] Universidade Federal de Pelotas, 2021.
CORRÊA, U. B. et al. Overview of the IDPT Task on Irony Detection in Portuguese at IberLEF 2021. Procesamiento del Lenguaje Natural, v. 67, p. 269–276, 2021.
CORREIA, F. A. et al. Fine-grained legal entity annotation: A case study on the Brazilian Supreme Court. Information Processing & Management, v. 59, n. 1, p. 102794, 2022.
CORTES, C.; VAPNIK, V. Support-Vector Networks. Machine Learning, v. 20, n. 3, p. 273–297, set. 1995.
CORTES, E. et al. An Empirical Comparison of Question Classification Methods for Question Answering Systems. (N. Calzolari et al., Eds.)Proceedings of the Twelfth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, 2020. Disponível em: <https://aclanthology.org/2020.lrec-1.665>
CORTES, E. G.; WOLOSZYN, V.; BARONE, D. A. C. When, Where, Who, What or Why? A Hybrid Model to Question Answering Systems. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2018.
CORTIZ, D. et al. A Weakly Supervised Dataset of Fine-Grained Emotions in Portuguese. Anais do XIII Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/17786>
COSTA, A. et al. A linguistically motivated taxonomy for Machine Translation error analysis. Machine Translation, v. 29, n. 2, p. 127–161, 2015.
COSTA, L. F. Using Answer Retrieval Patterns to Answer Portuguese Questions. (C. Peters et al., Eds.)Evaluating Systems for Multilingual and Multimodal Information Access. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
COSTA, L. F.; CABRAL, L. M. Answering Portuguese Questions. (A. Teixeira et al., Eds.)Computational Processing of the Portuguese Language. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
COSTA, P. B. DA et al. BERTabaporu: assessing a genre-specific language model for Portuguese NLP. Recents Advances in Natural Language Processing (RANLP-2023). Anais...Varna, Bulgaria: 2023.
COSTA, P. B. DA; PARABONI, I. Transferência de estilo textual arbitrário em português. Linguamática, v. 15, n. 2, p. 19–36, 2023.
COSTA, P. B. DA; PARABONI, I. Sequence-to-sequence and transformer approaches to Portuguese text style transfer. Proceedings of the 16th International Conference on Computational Processing of Portuguese. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. 2024. Disponível em: <https://aclanthology.org/2024.propor-1.54>
COSTA, P.; PARABONI, I. Personality-dependent Neural Text Summarization. Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019). Anais...2019.
COSTA, R. et al. Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-Generated Text. (G. Marreiros et al., Eds.)Progress in Artificial Intelligence. Anais...Cham: Springer International Publishing, 2022. Disponível em: <https://github.com/ulysses-camara/>
COUCKE, A. et al. Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190, 2018.
COUILLAULT, A. et al. Evaluating corpora documentation with regards to the Ethics and Big Data Charter. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14). Anais...Reykjavik, Iceland: European Language Resources Association (ELRA), 2014. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2014/pdf/424_Paper.pdf>
COUTINHO, I.; MARTINS, B. Transformer-based models for ICD-10 coding of death certificates with Portuguese text. Journal of Biomedical Informatics, v. 136, p. 104232, 2022.
COUTO, J. M. M.; REIS, J. C. S.; BENEVENUTO, F. Can computer network attributes be useful for identifying low-credibility websites? A case study in Brazil. Social Network Analysis and Mining, v. 14, n. 1, p. 153, 2024.
COWIE, J. R. Automatic analysis of descriptive texts. First Conference on Applied Natural Language Processing. Anais...1983.
COWIE, J.; LEHNERT, W. Information extraction. Communications of the ACM, v. 39, n. 1, p. 80–91, 1996.
COX, A. N. A. M., Simon J. D. AND Gonzalez-Beltran. Ten simple rules for making a vocabulary FAIR. PLOS Computational Biology, v. 17, n. 6, p. 1–15, jun. 2021.
CRESTANI, F. et al. “Is this document relevant?… probably” a survey of probabilistic models in information retrieval. ACM Computing Surveys (CSUR), v. 30, n. 4, p. 528–552, 1998.
CRESTI, E. et al. The C-ORAL-ROM CORPUS. A Multilingual Resource of Spontaneous Speech for Romance Languages. Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC04). Anais...Lisbon, Portugal: European Language Resources Association (ELRA), 2004. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/357.pdf>
CRISTEA, D.; IDE, N.; ROMARY, L. Veins theory: A model of global discourse cohesion and coherence. Coling-ACL Conference. Anais...1998.
CROCKER, M. W. Computational psycholinguistics. The handbook of computational linguistics and natural language processing, p. 482–513, 2010.
CROFT, W. B.; METZLER, D.; STROHMAN, T. Search engines: Information retrieval in practice. [s.l.] Addison-Wesley, 2010. v. 520
CRUSE, D. A. Lexical Semantics. Cambridge, UK: campress, 1986.
CRUZ, B. S. Concessionária do Metrô de SP é processada por ter câmeras que leem nossas emoções. Disponível em: < https://www.uol.com.br/tilt/noticias/redacao/2018/08/31/concessionaria-do-metro-de-sp-e-processada-por-ter-cameras-que-leem-emocoes.htm >. Acesso em: 29 ago. 2023.
CRUZ, B. S. Racismo Calculado. Disponível em: < https://www.uol.com.br/tilt/reportagens-especiais/como-os-algoritmos-espalham-racismo/#cover >. Acesso em: 29 ago. 2023.
CRUZ, J. A. DA et al. Creating an Academic Conversational Agent for Dynamic Information Retrieval. Proceedings of the XVI Brazilian Symposium on Information Systems. Anais...: SBSI ’20.New York, NY, USA: Association for Computing Machinery, 2020. Disponível em: <https://doi.org/10.1145/3411564.3411647>
CSIKSZENTMIHALYI, M. Flow: The Psychology of Optimal Experience. [s.l.] Harper Perennial, 2008.
CUCCHIARELLI, A.; VELARDI, P. Unsupervised named entity recognition using syntactic and semantic contextual evidence. Computational Linguistics, v. 27, n. 1, p. 123–131, 2001.
CUI, H. et al. Probabilistic query expansion using query logs. Proceedings of the 11th international conference on World Wide Web. Anais...2002.
CUI, L.; WEI, F.; ZHOU, M. Neural Open Information Extraction. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Anais...2018.
CULOTTA, A.; MCCALLUM, A.; BETZ, J. Integrating probabilistic extraction models and data mining to discover relations and patterns in text. Proceedings of the Human Language Technology Conference of the NAACL, Main Conference. Anais...2006.
CUNHA, A. L. V. DA. Coh-Metrix-Dementia: análise automática de distúrbios de linguagem nas demências utilizando Processamento de Línguas Naturais. ICMC - USP São Carlos: Biblioteca Digital USP, 2015.
CUNHA, L. C. C. DA. Um Corpus anotado de mensagens do WhatsApp em PT-BR para detecção automática de desinformação textual. https://github.com/cabrau/FakeWhatsApp.Br, 2021.
CUNHA RECUERO, R. DA. Elementos para a análise da conversação na comunicação mediada pelo computador. Verso e Reverso, v. 22, 2008.
DA SILVA JR., J. A. Um avaliador automático de redações. mathesis—[s.l.] Universidade Federal do Espírito Santo, 2021.
DADICO, C. M. O Ódio Ancestral Como Elemento Constitutivo Do Estado Moderno e Seus Reflexos Na Compreensão dos Crimes De Ódio: Um Diálogo Entre o Direito Internacional e o Direito Brasileiro. tese de doutorado—Porto Alegre, RS, Brazil: Programa de Pós-Grduação em Ciências Criminais da Escola de Direito da Pontifícia Universidade Católica do Rio Grande do Sul, 2020.
DAHL, V. Natural language processing and logic programming. Journal of Logic Programming, v. 19-20, n. 1, p. 681–714, 1994.
DAI, E.; SUN, Y.; WANG, S. Ginger cannot cure cancer: Battling fake health news with a comprehensive data repository. Proceedings of the International AAAI Conference on Web and Social Media. Anais...Atlanta, USA: 2020.
DAI, Z. et al. Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. (A. Korhonen, D. R. Traum, L. Màrquez, Eds.)Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Anais...Association for Computational Linguistics, 2019. Disponível em: <https://doi.org/10.18653/v1/p19-1285>
DALE, R.; HADDOCK, N. Generating referring expressions involving relations. Proceedings of the fifth conference on European chapter of the Association for Computational Linguistics. Anais...: EACL’91.Berlin, Germany: Association for Computational Linguistics, 1991.
DALE, R.; MAZUR, P. Handling Conjunctions in Named Entities. (A. Gelbukh, Ed.)Computational Linguistics and Intelligent Text Processing. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
DALIANIS, H. Characteristics of Patient Records and Clinical Corpora. Em: Clinical Text Mining: Secondary Use of Electronic Patient Records. Cham: Springer International Publishing, 2018. p. 21–34.
DANESCU-NICULESCU-MIZIL, C. et al. Echoes of power: Language effects and power differences in social interaction. Proceedings of the 21st international conference on World Wide Web. Anais...2012. Disponível em: <https://doi.org/10.1145/2187836.2187931>
DANTAS, A. C. et al. AstroBot: Um chatbot com inteligência artificial para auxiliar no processo de ensino e aprendizagem de fı́sica. Anais dos Workshops do Congresso Brasileiro de Informática na Educação. Anais...2019. Disponível em: <https://doi.org/10.5753/cbie.wcbie.2019.1196>
DARJI, H.; MITROVIĆ, J.; GRANITZER, M. German BERT Model for Legal Named Entity Recognition. Proceedings of the 15th International Conference on Agents and Artificial Intelligence. Anais...SCITEPRESS - Science; Technology Publications, 2023.
DARPA (ED.). Proceedings of the 3rd Message Understanding Conference (MUC-3). San Diego, EUA: Morgan Kaufmann, 1991.
DE OLIVEIRA, J. M.; ANTUNES, R. S.; DA COSTA, C. A. SOAP classifier for free-text clinical notes with domain-specific pre-trained language models. Expert Systems with Applications, v. 245, p. 123046, 2024.
DE PAIVA, V. et al. An overview of Portuguese wordnets. Proceedings of the 8th Global WordNet Conference (GWC). Anais...2016.
DE PAIVA, V.; RADEMAKER, A.; MELO, G. DE. OpenWordNet-PT: An Open Brazilian Wordnet for Reasoning. Proceedings of COLING 2012: Demonstration Papers. Anais...2012.
DE SOUSA, S. C.; AZIZ, W.; SPECIA, L. Assessing the post-editing effort for automatic and semi-automatic translations of DVD subtitles. Proceedings of the International Conference Recent Advances in Natural Language Processing 2011. Anais...2011.
DE SOUZA, M. C. et al. Keywords attention for fake news detection using few positive labels. Information Sciences, v. 663, p. 120300, 2024.
DEEMTER, K. VAN. Designing Algorithms for Referring with Proper Names. Proceedings of the 9th International Natural Language Generation conference. Anais...: INLG’16.Edinburgh, UK: Association for Computational Linguistics, a2016. Disponível em: <http://www.aclweb.org/anthology/W16-6605>
DEEMTER, K. VAN. Computational Models of Referring. A Study in Cognitive Science. Cambridge, Massachusetts, USA: MIT Press, 2016b.
DEERWESTER, S. et al. Indexing by latent semantic analysis. Journal of the American society for information science, v. 41, n. 6, p. 391–407, 1990.
DEJONG, G. Prediction and substantiation: A new approach to natural language processing. Cognitive Science, v. 3, n. 3, p. 251–273, 1979.
DEL CORRO, L.; GEMULLA, R. Clausie: clause-based open information extraction. Proceedings of the 22nd international conference on World Wide Web. Anais...: WWW ’13.New York, NY, USA: ACM; ACM, 2013. Disponível em: <http://doi.acm.org/10.1145/2488388.2488420>
DELL’ORLETTA, F.; MONTEMAGNI, S.; VENTURI, G. Read-it: Assessing readability of italian texts with a view to text simplification. Proceedings of the 2nd Workshop on Speech and Language Processing for Assistive Technologies, p. 73–83, 2011.
DEMNER-FUSHMAN, D.; CHAPMAN, W. W.; MCDONALD, C. J. What can natural language processing do for clinical decision support? J Biomed Inform, v. 42, n. 5, p. 760–772, ago. 2009.
DEMPSEY, P. The teardown: Google Home personal assistant. Engineering & Technology, v. 12, n. 3, p. 80–81, 2017.
DERIU, J. et al. Survey on evaluation methods for dialogue systems. Artificial Intelligence Review, v. 54, p. 755–810, 2021.
DETTMERS, T. et al. QLoRA: Efficient Finetuning of Quantized LLMs. arXiv preprint arXiv:2305.14314, 2023.
DEVARAJU, A. et al. FAIRsFAIR Data Object Assessment Metrics 0.5. [s.l.] Research Data Alliance (RDA), out. 2020. Disponível em: <https://zenodo.org/record/6461229>.
DEVLIN, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (J. Burstein, C. Doran, T. Solorio, Eds.)Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019. Anais...Minneapolis, MN, USA: Association for Computational Linguistics, 2019. Disponível em: <https://doi.org/10.18653/v1/n19-1423>
DHUMAL DESHMUKH, R.; KIWELEKAR, A. Deep Learning Techniques for Part of Speech Tagging by Natural Language Processing. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). Anais...mar. 2020.
DI GANGI, M. A. et al. MuST-C: a Multilingual Speech Translation Corpus. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Anais...Minneapolis, Minnesota: Association for Computational Linguistics, jun. 2019. Disponível em: <https://aclanthology.org/N19-1202>
DIAS, M. S. et al. A qualitative analysis of a corpus of opinion summaries based on aspects. Proceedings of the 1st Workshop on Tools and Resources for Automatically Processing Portuguese and Spanish. Anais...2014.
DIAS-DA-SILVA, B. C. A face tecnológica dos estudos da linguagem: o processamento automático das lı́nguas naturais. 1996. 272f. tese de doutorado—[s.l.] Tese (Doutorado em Lingüı́stica e Lı́ngua Portuguesa)–Faculdade de Ciências e …, 1996.
DIAS-DA-SILVA, B. C. Wordnet.Br: An Exercise of Human Language Technology Research. Proceedings of the Third International WordNet Conference. Anais...2005. Disponível em: <http://semanticweb.kaist.ac.kr/conference/gwc/pdf2006/6.pdf>
DIAS-DA-SILVA, B. C.; MORALES, H. R. DE. A Construção de um Thesaurus Eletrônico para o Português. Alfa, 2003.
DIAZ, F.; MITRA, B.; CRASWELL, N. Query Expansion with Locally-Trained Word Embeddings. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Anais...2016.
DODDINGTON, G. Automatic Evaluation of Machine Translation Quality Using N-Gram Co-Occurrence Statistics. Proceedings of the Second International Conference on Human Language Technology Research. Anais...: HLT ’02.San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.
DODDINGTON, G. et al. The Automatic Content Extraction (ACE) Program: Tasks, Data, and Evaluation. (M. T. Lino et al., Eds.)Proceedings of LREC’2004, Fourth International Conference on Language resources and Evaluation (Lisboa, 26-28 May 2004). Anais...2004. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf>
DODGE, J. et al. Show Your Work: Improved Reporting of Experimental Results. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...Hong Kong, China: Association for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1224>
DOHERTY, S. et al. Mapping the industry I: Findings on translation technologies and quality assessment. QTLaunchPad – Mapping the Industry I: Findings on Translation Technologies and Quality Assessment. Anais...GALA, 2013. Disponível em: <http://doras.dcu.ie/19474/1/Version_Participants_Final.pdf>. Acesso em: 11 nov. 2015
DOHERTY, S. et al. On Education and Training in Translation Quality Assessment. Em: MOORKENS, J. et al. (Eds.). Translation Quality Assessment: From Principles to Practice. Cham: Springer International Publishing, 2018. p. 95–106.
DONG, L. et al. Learning to Generate Product Reviews from Attributes. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Anais...: EACL’17.Valencia, Spain: Association for Computational Linguistics, 2017. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1059.pdf>
DONG, Q. et al. A Survey for In-context Learning. CoRR, v. abs/2301.00234, 2023.
DORR, B. et al. Machine translation evaluation and optimization. Em: Handbook of Natural Language Processing and Machine Translation: DARPA Global Autonomous Language Exploitation. [s.l.] Springer, 2011. p. 745–843.
DOZIER, C. et al. Named Entity Recognition and Resolution in Legal Text. Em: FRANCESCONI, E. et al. (Eds.). Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 27–43.
DROR, R. et al. The Hitchhiker’s Guide to Testing Statistical Significance in Natural Language Processing. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1128>
DROR, R. et al. Statistical significance testing for natural language processing. [s.l.] Springer, 2020.
DU BOIS, J. W. et al. Santa Barbara corpus of spoken American English. Parts 1–4. Philadelphia: Linguistic Data Consortium, 2000--2005.
DU BOIS, J. W. et al. Discourse transcription. Santa Barbara: Department of Linguistics, University of California, 1992. v. 4
DUBAY, W. Robert Gunning’s Fog Readability Formula. Plain Language At Work Newsletter, v. 8, 2014.
DUBAY, W. H. Smart Language: Readers, Readability, and the Grading of Text. Costa Mesa, CA: Impact Information, 2007.
DUMA, D.; KLEIN, E. Generating Natural Language from Linked Data: Unsupervised template extraction. Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Long Papers. Anais...Potsdam, Germany: Association for Computational Linguistics, 2013. Disponível em: <http://www.aclweb.org/anthology/W13-0108>
DUNCAN, S. Some signals and rules for taking speaking turns in conversations. Journal of personality and social psychology, v. 23, n. 2, p. 283, 1972.
DUNIETZ, J. The field of natural language processing is chasing the wrong goal. MIT Technology Review, 2020.
DURAN, M. S. et al. The Dawn of the Porttinari Multigenre Treebank: Introducing its Journalistic Portion. Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Porto Alegre, RS, Brasil: SBC, 2023. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25443>
DURAN, M. S.; ALUÍSIO, S. M. Propbank-Br: a Brazilian Treebank Annotated with Semantic Role Labels. Proceedings of the 8th International Conference on Language Resources and Evaluation - LREC. Anais...2012.
DUŠEK, O.; NOVIKOVA, J.; RIESER, V. Findings of the E2E NLG challenge. arXiv preprint arXiv:1810.01170, 2018.
EARL, L. L. Experiments in automatic extracting and indexing. Information Storage and Retrieval, v. 6, n. 4, p. 313–330, 1970.
EBDEN, P.; SPROAT, R. The Kestrel TTS text normalization system. Natural Language Engineering, v. 21, p. 333–353, maio 2014.
EDMONDS, P.; KILGARRIFF, A. Introduction to the special issue on evaluating word sense disambiguation systems. Natural Language Engineering, v. 8, n. 4, p. 279–291, 2002.
EDMUNDSON, H. P. New methods in automatic extracting. Journal of the ACM (JACM), v. 16, n. 2, p. 264–285, 1969.
EIJCK, J. VAN; UNGER, C. Computational Semantics with Functional Programming. [s.l.] Cambridge University Press, 2010.
EISENSTEIN, J. Introduction to Natural Language Processing. [s.l.] The MIT Press, 2019.
EKMAN, P. An argument for basic emotions. Cognition and Emotion, v. 6, n. 3-4, p. 169–200, 1992.
EL AYADI, M.; KAMEL, M. S.; KARRAY, F. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern recognition, v. 44, n. 3, p. 572–587, 2011.
ELLIOT, N.; KLOBUCAR, A. Handbook of automated essay evaluation: Current applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 16–35.
EMPOLI, G. DA. Os engenheiros do caos: Como as fake news, as teorias da conspiração e os algoritmos estão sendo utilizados para disseminar ódio, medo e influenciar eleições. [s.l.] Vestígio Editora, 2019.
ENGELMANN, D. C. et al. A conversational agent to support hospital bed allocation. Brazilian Conference on Intelligent Systems. Anais...Springer, 2021. Disponível em: <https://doi.org/10.1007/978-3-030-91702-9_1>
ERMAKOVA, L.; COSSU, J. V.; MOTHE, J. A survey on evaluation of summarization methods. Information processing & management, v. 56, n. 5, p. 1794–1814, 2019.
ERYIǦIT, G. et al. Annotation and Extraction of Multiword Expressions in Turkish Treebanks. Proceedings of the 11th Workshop on Multiword Expressions. Anais...Denver, Colorado: Association for Computational Linguistics, jun. 2015. Disponível em: <https://aclanthology.org/W15-0912>
ESSENFELDER, R.; RODRIGUES, V. P. Seqüências inseridas: fluência e disfluência em uma conversação espontânea. Revista Virtual de Estudos da Linguagem–ReVEL, v. 3, n. 4, 2005.
ESTRELLA, P.; POPESCU-BELIS, A.; KING, M. The FEMTI guidelines for contextual MT evaluation: principles and resources. Em: WALTER DAELEMANS; VÉRONIQUE HOSTE (Eds.). Evaluation of translation Technology. Linguistica Antverpiensia new Series- themes em Translation Studies. [s.l: s.n.].
ETHAYARAJH, K.; JURAFSKY, D. Utility is in the Eye of the User: A Critique of NLP Leaderboards. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.393>
ETZIONI, O. et al. Unsupervised named-entity extraction from the web: An experimental study. Artificial intelligence, v. 165, n. 1, p. 91–134, 2005.
Euromatrix. Survey of Machine Translation Evaluation. [s.l.] Statistical; Hybrid Machine Translation Between All European Languages. Euromatrix, dez. 2007.
EVERT, S. Corpora and collocations. Em: LÜDELING, A.; KYTÖ, M. (Eds.). Corpus Linguistics: An International Handbook. [s.l.] De Gruyter Mouton, 2009. v. 2p. 1212–1248.
EVERT, S.; KRENN, B. Methods for the Qualitative Evaluation of Lexical Association Measures. Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics. Anais...Toulouse, France: Association for Computational Linguistics, jul. 2001. Disponível em: <https://aclanthology.org/P01-1025>
FABBRI, A. R. et al. SummEval: Re-evaluating Summarization Evaluation. Transactions of the Association for Computational Linguistics, v. 9, p. 391–409, 2021.
FADER, A.; SODERLAND, S.; ETZIONI, O. Identifying Relations for Open Information Extraction. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Anais...Edinburgh, Scotland, UK.: Association for Computational Linguistics, jul. 2011. Disponível em: <https://www.aclweb.org/anthology/D11-1142>
FAIR DATA MATURITY MODEL WORKING GROUP RDA. FAIR Data Maturity Model. Specification and Guidelines. Research Data Alliance; Zenodo, 2020. Disponível em: <https://doi.org/10.15497/rda00050>
FAN, A.; LEWIS, M.; DAUPHIN, Y. Hierarchical Neural Story Generation. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1082>
FARAHMAND, M.; SMITH, A.; NIVRE, J. A Multiword Expression Data Set: Annotating Non-Compositionality and Conventionalization for English Noun Compounds. proc of the 11th Workshop on mwes (MWE 2015). Anais...Denver, Colorado, USA: acl, 2015. Disponível em: <http://aclweb.org/anthology/W15-0904>
FARHANGIAN, F.; CRUZ, R. M. O.; CAVALCANTI, G. D. C. Fake news detection: Taxonomy and comparative study. Information Fusion, v. 103, p. 102140, 2024.
FARIAS, D. S. et al. Opinion-Meter: A Framework for Aspect-Based Sentiment Analysis. Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web. Anais...2016.
FARZINDAR, A.; INKPEN, D. Natural Language Processing for Social Media. Second edition ed. [s.l.] Morgan; Claypool, 2018.
FAUSTINI, P. H. A.; COVÕES, T. F. Fake news detection in multiple platforms and languages. Expert Systems with Applications, v. 158, p. 113503, 2020.
FAUSTINI, P.; COVÕES, T. F. Fake News Detection Using One-Class Classification. Proceedings of the 8th Brazilian Conference on Intelligent Systems (BRACIS’19). Anais...Salvador, BA, Brazil: IEEE, out. 2019.
FÁVERO, L. L.; ANDRADE, M. L. DA C. V. DE O.; AQUINO, Z. G. O. DE. Perguntas e respostas como mecanismos de coesão e coerência no texto falado. Gramática do português falado, v. 4, p. 473–508, 1996.
FÁVERO, L. L.; ANDRADE, M. L. DA C. V. DE O.; AQUINO, Z. G. O. DE. Discurso e interação: a reformulação nas entrevistas. DELTA: Documentação de Estudos em Lingüı́stica Teórica e Aplicada, v. 14, p. 91–103, 1998.
FAYEK, H. M. Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between., 2016. Disponível em: <https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html>
FEDERICO, M. et al. Assessing the Impact of Translation Errors on Machine Translation Quality with Mixed-effects Models. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...Doha, Qatar: Association for Computational Linguistics, out. 2014. Disponível em: <https://aclanthology.org/D14-1172>
FEIJÓ, D. DE V.; MOREIRA, V. P. Mono vs Multilingual Transformer-based Models: a Comparison across Several Language Tasks. CoRR, v. abs/2007.09757, 2020.
FELLBAUM, C. WordNet: An Electronic Lexical Database. [s.l.] The MIT Press, 1998.
FELTRIM, V. D. et al. A Construção de uma Ferramenta de Auxílio à Escrita de Resumos Acadêmicos em Português. Anais do Encontro Nacional de Inteligência Artificial (ENIA’2003). Anais...SBC, 2003.
FELTRIN, G. R.; VIANNA, D.; SILVA, A. DA. Um Estudo Sobre Métricas de Avaliação para Sumarização de Acórdãos. Anais do XXXVIII Simpósio Brasileiro de Bancos de Dados. Anais...SBC, 2023.
FENNELLY, O. et al. Use of standardized terminologies in clinical practice: A scoping review. Int J Med Inform, v. 149, p. 104431, fev. 2021.
FERLA, J. R. Discurso reportado em narrativas: a construção colaborativa de histórias na fala-em-interação. Trabalho de conclusão de curso. Universidade do Vale do Rio dos Sinos, 2020.
FERNANDES, E. R.; SANTOS, C. N. DOS; MILIDIÚ, R. L. Latent trees for coreference resolution. Computational Linguistics, 2014.
FERNANDES, J. M.; WON, M.; MARTINS, B. Speechmaking and the Selectorate: Persuasion in Nonpreferential Electoral Systems. Comparative Political Studies, v. 53, n. 5, p. 667–699, a2020.
FERNANDES, U. DA S. et al. Analyzing MoLIC’s Applicability to Model the Interaction of Conversational Agents: A Case Study on ANA Chatbot. Proceedings of the XX Brazilian Symposium on Human Factors in Computing Systems. Anais...: IHC ’21.New York, NY, USA: Association for Computing Machinery, 2021. Disponível em: <https://doi.org/10.1145/3472301.3484367>
FERNANDES, W. P. D. et al. Appellate court modifications extraction for Portuguese. Artificial Intelligence and Law, v. 28, n. 3, p. 327–360, b2020.
FERRADEIRA, J. E. DE S. Resolução de anáfora pronominal. mathesis—[s.l.] Universidade Nova de Lisboa; Dissertação de Mestrado, Universidade Nova de Lisboa, 1993.
FERRÁNDEZ, Ó. et al. Tackling HAREM’s portuguese named entity recognition task with spanish resources. Reconhecimento de entidades mencionadas em português: Documentação e actas do HAREM, a primeira avaliação conjunta na área. Linguateca (http://www. linguateca. pt/aval_conjunta/LivroHAREM/Cap11-SantosCardoso2007-Ferrandezetal. pdf), 2007.
FERREIRA, A. et al. Agentes de conversação para idosos, plataforma Guardião. Anais Estendidos do XVIII Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais. Anais...Porto Alegre, RS, Brasil: SBC, 2019. Disponível em: <https://sol.sbc.org.br/index.php/ihc_estendido/article/view/8386>
FERREIRA, A. C. et al. Padrões linguísticos para detecção de ironia em múltiplos idiomas. Revista Gestão & Tecnologia, 2017.
FERREIRA, F.; SWETS, B. How incremental is language production? Evidence from the production of utterances requiring the computation of arithmetic sums. Journal of Memory and Language, v. 46, n. 1, p. 57–84, 2002.
FERREIRA MELLO, R. et al. Towards automated content analysis of rhetorical structure of written essays using sequential content-independent features in Portuguese. (A. F. Wise, R. Martinez-Maldonado, I. Hilliger, Eds.)LAK22 Conference Proceedings. Anais...United States of America: Association for Computing Machinery (ACM), 2022.
FERREIRA, R. et al. Towards Automatic Content Analysis of Rhetorical Structure in Brazilian College Entrance Essays. Em: [s.l: s.n.]. p. 162–167.
FERREIRA, T. C. Advances in Natural Language Generation: Generating varied outputs from semantic inputs. tese de doutorado—[s.l.] Tilburg University, 2018.
FERREIRA, T. C. et al. The 2020 bilingual, bi-directional webnlg+ shared task overview and evaluation results (webnlg+ 2020). Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+). Anais...2020.
FIAD, R. S. Reescrita, dialogismo e etnografia. Linguagem em (Dis) curso, v. 13, p. 463–480, 2013.
FILLMORE, C. J. et al. Frame semantics and the nature of language. Annals of the New York Academy of Sciences: Conference on the origin and development of language and speech. Anais...New York, 1976.
FILLMORE, C. J.; KAY, P.; O’CONNOR, M. C. Regularity and Idiomaticity in Grammatical Constructions: The Case of Let Alone. Language, v. 64, p. 501–538, 1988.
FINATTO, M. J. B. Projeto PorPopular, frequência de verbos em português e no jornal popular popular brasileiro. Em: UFMS/LABORATÓRIO DE EDIÇÃO DA FALE-UFMG, E. DA (Ed.). As Ciências do Léxico: lexicologia, lexicografia, terminologia. 1. ed. [s.l.] Aparecida Negri Isquerdo; Maria Cândida Trindade da Costa de Seabra, 2012. v. VIp. 227–244.
FINATTO, M. J. B. Humanidades digitais e estudos históricos do léxico. Domínios de Lingu@gem, v. 17, p. e1769, 2023.
FINATTO, M. J. B.; ESTEVES, F. F.; VILLAR, G. S. Construindo uma terminologia de raiz: textos legislativos sob exploração terminológica. Revista Platô, v. 5, n. 9, 2022.
FINATTO, M. J. B.; PARAGUASSU, L. B. Acessibilidade textual e terminológica. 2022.
FINATTO, M. J.; GONÇALVES, M. F.; LAZZARI, R. Léxico e terminologia em um novo gênero textual do século XVIII: o manual para enfermeiros. In: Natalia Terrón Vinagre & Jenny Brumme (orgs.) Emergencia de nuevos géneros textuales y terminología en la historia de los lenguajes de especialidad., 2023.
FINCH, S. E.; CHOI, J. D. Towards Unified Dialogue System Evaluation: A Comprehensive Analysis of Current Evaluation Protocols. Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Anais...1st virtual meeting: Association for Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.sigdial-1.29>
FINE, K. Truthmaker semantics. A Companion to the Philosophy of Language, p. 556–577, 2017.
FINGER, M. Técnicas de otimização da precisão empregadas no etiquetador Tycho Brahe. Proceedings of the International Conference on the Computational treatment of Portuguese, PROPOR, 2000.
FINLAYSON, M.; KULKARNI, N. Detecting Multi-Word Expressions Improves Word Sense Disambiguation. Proc. of the ACL 2011 Workshop on MWEs. Anais...Portland, OR: 2011.
FIRDAUS SOLIHIN, R. F. A., Indra Budi; MAKARIM, E. Advancement of information extraction use in legal documents. International Review of Law, Computers & Technology, v. 35, n. 3, p. 322–351, 2021.
FIRTH, J. R. The technique of semantics. Transactions of the philological society, v. 34, n. 1, p. 36–73, a1957.
FIRTH, J. R. A synopsis of linguistic theory 1930–1955. [s.l.] Blackwell, 1957b. p. 1–32
FLAKE, J. K.; FRIED, E. I. Measurement Schmeasurement: Questionable Measurement Practices and How to Avoid Them. Advances in Methods and Practices in Psychological Science, v. 3, n. 4, p. 456–465, 2020.
FLEISS, J. L. Measuring nominal scale agreement among many raters. Psychological Bulletin, v. 76, n. 5, p. 378–382, 1971.
FLORES, F. N.; MOREIRA, V. P.; HEUSER, C. A. Assessing the impact of stemming accuracy on information retrieval. International Conference on Computational Processing of the Portuguese Language. Anais...Springer, 2010.
FLORIAN, R. et al. Named entity recognition through classifier combination. Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003. Anais...2003.
FOKKENS, A. et al. Offspring from Reproduction Problems: What Replication Failure Teaches Us. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Sofia, Bulgaria: Association for Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-1166>
FONSECA, E. B. Resolução de correferências em língua portuguesa: pessoa, local e organização. Dissertação de Mestrado, Pontifı́cia Universidade Católica do Rio Grande do Sul, 2014.
FONSECA, E. B. et al. Summ-it++: an enriched version of the summ-it corpus. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...a2016.
FONSECA, E. B. Resolução de correferência nominal usando semântica em língua portuguesa. tese de doutorado—[s.l.] Pontifícia Universidade Católica do Rio Grande do Sul; Pontifı́cia Universidade Católica do Rio Grande do Sul, 2018.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Dealing With Imbalanced Datasets For Coreference Resolution. Proceedings of The Twenty-Eighth International Flairs Conference. Anais...a2015.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. Adapting an Entity Centric Model for Portuguese Coreference Resolution. Portorož, Slovenia, c2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. CORP: Coreference Resolution for Portuguese., b2016.
FONSECA, E. B.; VIEIRA, R.; VANIN, A. A. Coreference Resolution In Portuguese: Detecting Person, Location And Organization. Journal of the Brazilian Computational Intelligence Society, v. 12, n. 2, p. 86–97, 2014.
FONSECA, E. R. et al. Visão geral da avaliação de similaridade semântica e inferência textual. Linguamática, v. 8, n. 2, p. 3–13, d2016.
FONSECA, E. R. et al. Automatically Grading Brazilian Student Essays. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Springer International Publishing, a2018.
FONSECA, E. R.; ROSA, J. L. G. Mac-Morpho Revisited: Towards Robust Part-of-Speech Tagging. Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology. Anais...2013. Disponível em: <https://aclanthology.org/W13-4811>
FONSECA, E. R.; ROSA, J. L.; ALUÍSIO, S. M. Evaluating word embeddings and a revised corpus for part-of-speech tagging in Portuguese. Journal of the Brazilian Computer Society, v. 21, n. 1, p. 32–38, fev. b2015.
FONSECA, E.; VANIN, A.; VIEIRA, R. Mention clustering to improve portuguese semantic coreference resolution. International Conference on Applications of Natural Language to Information Systems. Anais...Springer, b2018.
FONT LLITJÓS, A.; CARBONELL, J. G.; LAVIE, A. A framework for interactive and automatic refinement of transfer-based machine translation. Proceedings of the 10th EAMT Conference: Practical applications of machine translation. Anais...Budapest, Hungary: European Association for Machine Translation, 2005. Disponível em: <https://aclanthology.org/2005.eamt-1.13>
FORCADA, M. L.; ÑECO, R. P. Recursive hetero-associative memories for translation. International Work-Conference on Artificial Neural Networks. Anais...Springer, 1997.
FORNACIARI, T.; POESIO, M. Automatic deception detection in Italian court cases. Artif. Intell. Law, v. 21, n. 3, p. 303–340, set. 2013.
FORT, K.; ADDA, G.; COHEN, K. B. Last Words: Amazon Mechanical Turk: Gold Mine or Coal Mine? Computational Linguistics, v. 37, n. 2, p. 413–420, jun. 2011.
FORTE MARTINS, A. D. et al. Detection of misinformation about covid-19 in Brazilian Portuguese WhatsApp messages. International Conference on Applications of Natural Language to Information Systems. Anais...Springer, 2021.
FORTUNA, P. et al. A Hierarchically-Labeled Portuguese Hate Speech Dataset. Proceedings of the Third Workshop on Abusive Language Online. Anais...2019.
FORTUNA, P.; NUNES, S. A survey on automatic detection of hate speech in text. ACM Computing Surveys (CSUR), 2018.
FOVE. Fove Eye Tracker., 2018. Disponível em: <https://www.getfove.com/>
FREGE, G. Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, v. 100, p. 25–50, 1892/19601892/1960.
FREIRE, P. Pedagogia do Oprimido. Rio de Janeiro: Paz e Terra/SA, 1989.
FREITAS, C. et al. Relações semânticas do ReRelEM: além das entidades no Segundo HAREM. Em: MOTA, C.; SANTOS, D. (Eds.). Desafios na avaliação conjunta do reconhecimento de entidades mencionadas. [s.l.] Linguateca, 2008a. p. 77–96.
FREITAS, C. et al. Relation detection between named entities: report of a shared task. Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions. Anais...Boulder, Colorado: b2009.
FREITAS, C. et al. Detection of relations between named entities: report of a shared task. Proceedings of the NAACL HLT Workshop on Semantic Evaluations: Recent Achievements and Future Directions, SEW-2009. Anais...Boulder, Colorado, USA: a2009. Disponível em: <https://comum.rcaap.pt/bitstream/10400.26/20504/1/FreitasetalSEW2009.pdf>
FREITAS, C. et al. Second HAREM: Advancing the State of the Art of Named Entity Recognition in Portuguese. Proceedings of the International Conference on Language Resources and Evaluation. Anais...Valletta, Malta: 2010. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2010/summaries/412.html>
FREITAS, C. et al. Vampiro que brilha... rá! Desafios na anotação de opinião em um corpus de resenhas de livros. Proceedings of XI Encontro de Linguística de Corpus. Anais...a2012.
FREITAS, C. et al. O que é uma resposta? Notas de uns avaliadores estafados. Linguamática, v. 4, n. 1, p. 67–75, b2012.
FREITAS, C. Sobre a construção de um léxico da afetividade para o processamento computacional do português. Revista Brasileira de Linguística Aplicada, 2013.
FREITAS, C. et al. Tagsets and Datasets: Some Experiments Based on Portuguese Language. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2018.
FREITAS, C. Linguística Computacional. [s.l.] Parábola Editorial, 2022.
FREITAS, C.; ROCHA, P.; BICK, E. Floresta sintá(c)tica: bigger, thicker and easier. International Conference on Computational Processing of the Portuguese Language. Anais...Springer, b2008.
FREITAS, C.; SANTOS, D. Gender Depiction in Portuguese: Distant reading Brazilian and Portuguese literature. 2nd Annual Conference of Computational Literary Studies. Anais...2023. Disponível em: <https://www.linguateca.pt/Diana/download/FreitasSantos2023-2ndCCLS.pdf>
FREITAS, C.; SOUZA, E. Sujeito oculto às claras: uma abordagem descritivo-computacional / Omitted subjects revealed: a quantitative-descriptive approach. REVISTA DE ESTUDOS DA LINGUAGEM, v. 29, n. 2, p. 1033–1058, 2021.
FREITAS, L. A. DE et al. Pathways for irony detection in tweets. Proceedings of the Symposium on Applied Computing (SAC). Anais...2014.
FREITAS, L. A. DE. Feature-level sentiment analysis applied to brazilian portuguese reviews. tese de doutorado—[s.l.] Pontifícia Universidade Católica do Rio Grande do Sul, 2015.
FREITAS, L. A. DE; SANTOS, L. DOS; DEON, D. Padrões linguísticos para detecção de ironia em múltiplos idiomas. Revista Eletrônica de Iniciação Científica em Computação, 2020.
FRESCHI, A. C. A avaliação por pares no teletandem institucional integrado: um estudo de caso sobre o feedback linguı́stico nas sessões orais em português. mathesis—[s.l.] Universidade Estadual Paulista (Unesp), 2017.
FRIEDMAN, B. et al. Value sensitive design and information systems. Early engagement and new technologies: Opening up the laboratory, p. 55–95, 2013.
FULLER, C. et al. An Analysis of Text-Based Deception Detection Tools. Proceedings of the Twelfth Americas Conference on Information Systems. Anais...2006.
FYFE, S. et al. Apophenia, theory of mind and schizotypy: perceiving meaning and intentionality in randomness. Cortex, v. 44, n. 10, p. 1316–1325, 2008.
GAGO, P. C. Questões de transcrição em análise da conversa. Veredas-Revista de Estudos Linguı́sticos, v. 6, n. 2, 2002.
GAIZAUSKAS, R. Evaluating Language Processing Applications and Components., 2003. Disponível em: <https://www.linguateca.pt/Repositorio/rgaizauskasPROPOR2003.pdf>
GALHARDI, C. P. et al. Fato ou Fake? Uma análise da desinformação frente à pandemia da COVID-19 no Brasil. Ciência & Saúde Coletiva, v. 25, p. 4201–4210, out. 2020.
GAMALLO, P.; GARCIA, M. Multilingual open information extraction. (F. Pereira et al., Eds.)Portuguese Conference on Artificial Intelligence. Anais...Cham: Springer; Springer International Publishing, 2015. Disponível em: <https://doi.org/10.1007/978-3-319-23485-4_72>
GAMALLO, P.; GARCIA, M.; FERNÁNDEZ-LANZA, S. Dependency-based open information extraction. Proceedings of the joint workshop on unsupervised and semi-supervised learning in NLP. Anais...: ROBUS-UNSUP ’12.Stroudsburg, PA, USA: Association for Computational Linguistics; Association for Computational Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2389961.2389963>
GAMBHIR, M.; GUPTA, V. Recent automatic text summarization techniques: a survey. Artificial Intelligence Review, v. 47, p. 1–66, 2017.
GAMON, M. et al. Handbook of automated essay evaluation: Current applications and new directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 251–266.
GAO, T.; YAO, X.; CHEN, D. SimCSE: Simple Contrastive Learning of Sentence Embeddings. (M.-F. Moens et al., Eds.)Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.552>
GAO, Y. et al. Retrieval-Augmented Generation for Large Language Models: A Survey., 2024. Disponível em: <https://arxiv.org/abs/2312.10997>
GARCEZ, P. DE M. A organização da fala-em-interação na sala de aula: controle social, reprodução de conhecimento, construção conjunta de conhecimento. Calidoscópio, v. 4, n. 1, p. 66–80, 2006.
GARCEZ, P. M.; LODER, L. L. Reparo iniciado e levado a cabo pelo outro na conversa cotidiana em português do Brasil. DELTA: Documentação de Estudos em Lingüı́stica Teórica e Aplicada, v. 21, p. 279–312, 2005.
GARCIA, E. A. S. et al. RoBERTaLexPT: A Legal RoBERTa Model pretrained with deduplication for Portuguese. (P. Gamallo et al., Eds.)Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. a2024. Disponível em: <https://aclanthology.org/2024.propor-1.38>
GARCIA, G. L. et al. Text Summarization and Temporal Learning Models Applied to Portuguese Fake News Detection in a Novel Brazilian Corpus Dataset. (P. Gamallo et al., Eds.)Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. b2024. Disponível em: <https://aclanthology.org/2024.propor-1.9>
GARCIA, G. L.; AFONSO, L. C.; PAPA, J. P. FakeRecogna: a new brazilian corpus for fake news detection. International Conference on Computational Processing of the Portuguese Language. Anais...Springer, 2022.
GARCIA, M. et al. Probing for idiomaticity in vector space models. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Anais...Online: Association for Computational Linguistics, abr. 2021. Disponível em: <https://aclanthology.org/2021.eacl-main.310>
GARCIA, M.; GAMALLO, P. An Entity-Centric Coreference Resolution System for Person Entities with Rich Linguistic Information. Proceedings of 25th International Conference on Computational Linguistics. Anais...Dublin, Ireland: 2014. Disponível em: <http://aclweb.org/anthology/C/C14/C14-1070.pdf>
GARDENT, C. et al. The WebNLG Challenge: Generating Text from RDF Data. Proceedings of the 10th International Conference on Natural Language Generation. Anais...: INLG’17.Santiago de Compostela, Spain: Association for Computational Linguistics, 2017. Disponível em: <http://aclweb.org/anthology/W17-3518>
GARGETT, A. et al. The GIVE-2 Corpus of Giving Instructions in Virtual Environments. Proceedings of LREC-2010. Anais...Valletta, Malta: ELRA, 2010.
GARIJO, D.; POVEDA-VILLALÓN, M. Best Practices for Implementing FAIR Vocabularies and Ontologies on the Web. CoRR, v. abs/2003.13084, 2020.
GATT, A.; BELZ, A. Introducing Shared Tasks to NLG: The TUNA Shared Task Evaluation Challenges. Em: KRAHMER, E.; THEUNE, M. (Eds.). Empirical Methods in Natural Language Generation. Berlin, Heidelberg: Springer-Verlag, 2010. p. 264–293.
GATT, A.; KRAHMER, E. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, v. 61, p. 65–170, 2018.
GATT, A.; SLUIS, I. VAN DER; DEEMTER, K. VAN. Evaluating algorithms for the generation of referring expressions using a balanced corpus. Proceedings of ENLG-07. Anais...Schloss Dagstuhl, Germany: Association for Computational Linguistics, 2007.
GAUY, M. M.; FINGER, M. Pretrained audio neural networks for Speech emotion recognition in Portuguese. Proceedings of the Workshop on Automatic Speech Recognition for Spontaneous and Prepared Speech & Speech Emotion Recognition in Portuguese co-located with 15th edition of the International Conference on the Computational Processing of Portuguese (PROPOR 2022). Anais...2022.
GAZZOLA, M.; LEAL, S. E.; ALUISIO, S. M. Predição da Complexidade Textual de Recursos Educacionais Abertos em Português. Proceedings of the Brazilian Symposium in Information and Human Language Technology. Anais...2019.
GEERAERT, K.; BAAYEN, R. H.; NEWMAN, J. “Spilling the bag” on idiomatic variation. Em: MARKANTONATOU, S. et al. (Eds.). Multiword expressions at length and in depth: Extended papers from the MWE 2017 workshop. Berlin: Language Science Press., 2018. p. 1–33.
GEHRMANN, S. et al. The gem benchmark: Natural language generation, its evaluation and metrics. arXiv preprint arXiv:2102.01672, 2021.
GEORGE, J. F.; KEANE, B. T. Deception Detection by Disinterested Third-Party Observers. Proceedings of the Credibility Assessment and Information Quality in Government and Business Symposium, 39th Hawaii International Conference on System Sciences (HICSS). Anais...Kauai, HI: 2006.
GEURGAS, R.; TESSLER, L. R. Automatic detection of fake tweets about the COVID-19 Vaccine in Portuguese. Social Network Analysis and Mining, v. 14, n. 1, p. 55, 8 mar. 2024.
GEVA, M.; GUPTA, A.; BERANT, J. Injecting Numerical Reasoning Skills into Language Models. (D. Jurafsky et al., Eds.)Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Anais...Association for Computational Linguistics, 2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.89>
GEY, F. et al. GeoCLEF 2006: the CLEF 2006 Cross-Language Geographic Information Retrieval Track Overview. Em: PETERS, C. et al. (Eds.). Evaluation of Multilingual and Multi-modal Information Retrieval - 7th Workshop of the Cross-Language Evaluation Forum, CLEF 2006. Alicante, Spain, September, 2006. Revised Selected papers. Lecture Notes em Computer Science. Berlin / Heidelberg: Springer, 2007. v. 4730p. 852–876.
GHANEM, B. et al. IDAT at FIRE2019: Overview of the Track on Irony Detection in Arabic Tweets. Proceedings of the 11th Forum for Information Retrieval Evaluation. Anais...2019.
GHOSH, A. et al. SemEval-2015 Task 11: Sentiment Analysis of Figurative Language in Twitter. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Anais...2015.
GIAMPICCOLO, D. et al. Overview of the CLEF 2007 Multilingual Question Answering Track. Em: PETERS, C. et al. (Eds.). Advances in Multilingual and Multimodal Information Retrieval: 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Budapest, Hungary, September 19-21, 2007, Revised Selected Papers. Lecture Notes em Computer Science. Berlin: Springer, 2008. v. 5152p. 200–236.
GIBBS, R. W.; COLSTON, H. L. The Risks and Rewards of Ironic Communication. Say not to say: new perspectives on miscommunication. Anais...2001. Disponível em: <https://api.semanticscholar.org/CorpusID:12510370>
GILES, H. Communication Accommodation Theory. The International Encyclopedia of Communication Theory and Philosophy, p. 1–7, 2016.
GINZBURG, J. The Interactive Stance. [s.l.] Oxford University Press, 2012.
GINZBURG, J.; FERNÁNDEZ, R. M.; SCHLANGEN, D. Disfluencies as intra-utterance dialogue moves. Semantics and Pragmatics, v. 7, n. 9, p. 64, 2014.
GLAUBER, R. et al. Challenges of an Annotation Task for Open Information Extraction in Portuguese. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2018.
GLAUBER, R.; CLARO, D. B. A systematic mapping study on open information extraction. Expert Systems with Applications, v. 112, p. 372–387, 2018.
GLAUBER, R.; CLARO, D. B.; OLIVEIRA, L. S. Dependency Parser on Open Information Extraction for Portuguese Texts - DptOIE and DependentIE on IberLEF. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019). Anais...http://ceur-ws.org/Vol-2421/: CEUR Workshop Proceedings, a2019.
GLAUBER, R.; CLARO, D. B.; SENA, C. F. DE L. Towards a Pragmatic Open Information Extraction for Portuguese Text - ICEIS17, InferPortOIE and PragmaticOIE on IberLEF. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019). Anais...http://ceur-ws.org/Vol-2421/: CEUR Workshop Proceedings, b2019.
GOLDBERG, A. Constructions at Work: The Nature of Generalization in Language. [s.l.] Oxford University Press, 2005.
GOLDBERG, A. E. Compositionality. Em: RIEMER, N. (Ed.). The Routledge Handbook of Semantics. [s.l.] Routledge, 2015.
GOLDBERG, E.; DRIEDGER, N.; KITTREDGE, R. I. Using Natural-Language Processing to Produce Weather Forecasts. IEEE Expert: Intelligent Systems and Their Applications, p. 45–53, 1994.
GÔLO, M. P. S. et al. One-class learning for fake news detection through multimodal variational autoencoders. Engineering Applications of Artificial Intelligence, v. 122, p. 106088, 2023.
GOLUB, G. H.; REINSCH, C. Singular Value Decomposition and Least Squares Solutions. [s.l.] Numer. Math 14, 1970. p. 403–420
GOMES, D. S.; COELHO, O.; MORGADO, C. As implicações da espacialização como categoria analı́tica da conversa na Lı́ngua Brasileira de Sinais e na Lı́ngua Gestual Portuguesa. Sensos-e, v. 7, n. 3, p. 57–69, 2020.
GOMES, J. R. S. et al. Deep Learning Brasil at ABSAPT 2022: Portuguese Transformer Ensemble Approaches. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, September 20, 2022. Anais...2022.
GONÇALO OLIVEIRA, H. et al. Avaliação à medida no Segundo HAREM. (C. Mota, D. Santos, Eds.)Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. Anais...Linguateca, 2008.
GONÇALO OLIVEIRA, H. Beyond the automatic construction of a lexical ontology for Portuguese: resources developed in the scope of Onto.PT. Proceedings of Workshop on Tools and Resources for Automatically Processing Portuguese and Spanish. Anais...: TorPorEsp.São Carlos, SP, Brasil: BDBComp, 2014. Disponível em: <http://www.lbd.dcc.ufmg.br/colecoes/torporesp/2014/004.pdf>
GONÇALO OLIVEIRA, H. et al. Using Lucene for Developing a Question-Answering Agent in Portuguese. (R. Rodrigues et al., Eds.)8th Symposium on Languages, Applications and Technologies (SLATE 2019). Anais...: Open Access Series em Informatics (OASIcs).Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. Disponível em: <https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2019.2>
GONÇALO OLIVEIRA, H. et al. A Brief Survey of Textual Dialogue Corpora. Proceedings of the Thirteenth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.135>
GONÇALO OLIVEIRA, H.; GOMES, P. ECO and Onto-PT: a flexible approach for creating a Portuguese Wordnet automatically. Language Resources and Evaluation, v. 48, n. 2, p. 373–393, 2014.
GONÇALVES, M. et al. Avaliação de recursos computacionais para o português. Linguamática, v. 12, n. 2, p. 51–68, 2020.
GONÇALVES, S. C. L. Projeto ALIP (Amostra Linguística do Interior Paulista) e banco de dados Iboruna: 10 anos de contribuição com a descrição do português brasileiro. Estudos Linguísticos (São Paulo. 1978), v. 48, n. 1, p. 276–297, 2019.
GONÇALVES, T. et al. Clinical Screening Prediction in the Portuguese National Health Service: Data Analysis, Machine Learning Models, Explainability and Meta-Evaluation. Future Internet, v. 15, n. 1, p. 26, 2023.
GONG, Z. et al. Continual Pre-training of Language Models for Math Problem Understanding with Syntax-Aware Memory Network. (S. Muresan, P. Nakov, A. Villavicencio, Eds.)Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022. Anais...Association for Computational Linguistics, 2022. Disponível em: <https://doi.org/10.18653/v1/2022.acl-long.408>
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [s.l.] MIT Press, 2016. v. 1
GOODING, S.; TASLIMIPOOR, S.; KOCHMAR, E. Incorporating Multiword Expressions in Phrase Complexity Estimation. Proceedings of the 1st Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI). Anais...Marseille, France: European Language Resources Association, 2020. Disponível em: <https://aclanthology.org/2020.readi-1.3>
GORMAN, K.; BEDRICK, S. We Need to Talk about Standard Splits. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Anais...Florence, Italy: Association for Computational Linguistics, jul. 2019. Disponível em: <https://aclanthology.org/P19-1267>
GRAESSER, A. C. et al. Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, n Computer - Springer, p. 193–202, 2004.
GRAESSER, A. C.; MCNAMARA, D. S.; KULIKOWICH, J. M. Coh-Metrix: Providing Multilevel Analyses of Text Characteristics. Educational Researcher Vol. 40, N. 5, p. 223–234, 2011.
GRAHAM, Y. et al. Is all that Glitters in Machine Translation Quality Estimation really Gold? Proceedings of COLING 2016: Technical Papers. Anais...Osaka, Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em: <https://www.aclweb.org/anthology/C16-1294>
GRALIŃSKI, F. et al. Computational Lexicography of Multi-Word Units. How Efficient Can It Be? Proceedings of the 2010 Workshop on Multiword Expressions: from Theory to Applications. Anais...Beijing, China: Coling 2010 Organizing Committee, ago. 2010. Disponível em: <https://aclanthology.org/W10-3702>
GRAVES, A.; MOHAMED, A.; HINTON, G. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Anais...2013.
GREEN, S.; MARNEFFE, M.-C. DE; MANNING, C. D. Parsing Models for Identifying Multiword Expressions. Computational Linguistics, v. 39, n. 1, p. 195–227, mar. 2013.
GRÉGOIRE, N. DuELME: a Dutch electronic lexicon of multiword expressions. Language Resources and Evaluation, v. 44, p. 23–39, 2010.
GREGOROMICHELAKI, E. et al. Incrementality and intention-recognition in utterance processing. Dialogue & Discourse, v. 2, n. 1, p. 199–233, 2011.
GRICE, H. P. Logic and Conversation. Em: Syntax and Semantics: Vol. 3: Speech Acts. [s.l.] Academic Press, 1975.
GRIES, S. C. Estatística com R para a Linguística. [s.l.] FALE/ UFMG, 2019.
GRIS, L. R. S. et al. Bringing NURC/SP to digital life: the role of open-source automatic speech recognition models. Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional. Anais...Porto Alegre, RS, Brasil: SBC, 2022. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/22793>
GRIS, L. R. S. et al. Evaluating OpenAI’s Whisper ASR for Punctuation Prediction and Topic Modeling of life histories of the Museum of the Person., 2023. Disponível em: <https://arxiv.org/abs/2305.14580>
GRISHMAN, R.; SUNDHEIM, B. Message Understanding Conference- 6: A Brief History. COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics. Anais...1996. Disponível em: <https://aclanthology.org/C96-1079>
GROSS, M. Lexicon - Grammar The Representation of Compound Words. Coling 1986 Volume 1: The 11th International Conference on Computational Linguistics. Anais...1986. Disponível em: <https://aclanthology.org/C86-1001>
GROSZ, B. J.; JOSHI, A. K.; WEINSTEIN, S. Centering: A framework for modelling the local coherence of discourse. IRCS Technical Reports Series, 1995.
GROSZ, B. J.; SIDNER, C. L. Attention, intentions, and the structure of discourse. Computational linguistics, v. 12, n. 3, p. 175–204, 1986.
GROUP, E. E. W. et al. EAGLES Evaluation of Natural Language Processing Systems - Final Report. ISSCO, 1996. Disponível em: <https://www.issco.unige.ch/en/research/projects/eagles/index.html>
GRUBER, A.; WEISS, Y.; ROSEN-ZVI, M. Hidden Topic Markov Models. Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. Anais...: Proceedings of Machine Learning Research.San Juan, Puerto Rico: PMLR, mar. 2007.
GRUBER, T. R. Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface. Semantic Technologies Conference. Anais...2009.
GRUPPI, M.; HORNE, B. D.; ADALI, S. NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles. CoRR, v. abs/2003.08444, p. 1–5, 2020.
GRUPPI, M.; HORNE, B. D.; ADALI, S. NELA-GT-2020: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles. CoRR, v. abs/2102.04567, p. 1–6, 2021.
GUARINO, N.; GUIZZARDI, G. We need to Discuss the Relationship: Revisiting Relationships as Modeling Constructs. Proceedings of the 27th International Conference on Advanced Information Systems Engineering (CAISE 2015). Anais...Springer-Verlag, 2015.
GUERINO, G.; VALENTIM, N. Is anybody there?”: Exploring the use and difficulties of Brazilians with Conversational Systems. Anais do XIX Simpósio Brasileiro sobre Fatores Humanos em Sistemas Computacionais. Anais...Porto Alegre, RS, Brasil: SBC, 2020. Disponível em: <https://sol.sbc.org.br/index.php/ihc/article/view/13835>
GUIMARÃES, G. M. C. et al. Legal Document Segmentation and Labeling Through Named Entity Recognition Approaches. Journal of Information and Data Management, v. 15, n. 1, 2024.
GUIMARÃES, J. A. C.; SANTOS, J. C. G. A ementa jurisprudencial como resumo informativo em um domı́nio especializado: aspectos estruturais. Brazilian Journal of Information Science: research trends, v. 10, n. 3, 2016.
GUIMARÃES, S. S. et al. Characterizing Toxicity on Facebook Comments in Brazil. Proceedings of the Brazilian Symposium on Multimedia and the Web. Anais...2020.
GUIZZARDI, G. Ontology, Ontologies and the “I” of FAIR. Data Int., v. 2, n. 1-2, p. 181–191, 2020.
GULATI, A. et al. Conformer: Convolution-augmented Transformer for Speech Recognition. CoRR, v. abs/2005.08100, 2020.
GULDEN, C. et al. Extractive summarization of clinical trial descriptions. International Journal of Medical Informatics, v. 129, p. 114–121, 2019.
GUMIEL, Y. B. et al. Temporal Relation Extraction in Clinical Texts: A Systematic Review. v. 54, n. 7, set. 2021.
GUO, Q. et al. P2: A Plan-and-Pretrain Approach for Knowledge Graph-to-Text Generation. Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+). Anais...2020.
GURURANGAN, S. et al. Annotation Artifacts in Natural Language Inference Data. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Anais...New Orleans, Louisiana: Association for Computational Linguistics, jun. 2018. Disponível em: <https://aclanthology.org/N18-2017>
GURURANGAN, S. et al. Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Online: Association for Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.740>
HABIBI, M. et al. Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics, v. 33, n. 14, p. i37–i48, 2017.
HAENDCHEN FILHO, A. et al. An approach to evaluate adherence to the theme and the argumentative structure of essays. International Conference on Knowledge-Based Intelligent Information & Engineering Systems. Anais...2018.
HAENDCHEN FILHO, A. et al. Imbalanced Learning Techniques for Improving the Performance of Statistical Models in Automated Essay Scoring. Procedia Computer Science, v. 159, p. 764–773, jan. 2019.
HAGÈGE, C.; BAPTISTA, J.; MAMEDE, N. Portuguese Temporal Expressions Recognition: from TE characterization to an effective TER module implementation. The 7th Brazilian Symposium in Information and Human Language Technology (STIL 2009). Anais...São Carlos, Brasil: 2009. Disponível em: <http://www.nilc.icmc.usp.br/til/stil2009_English/Proceedings/stil/Hagege-57697_1.pdf>
HAGEMEIJER, T. et al. The PALMA Corpora of African Varieties of Portuguese. Proceedings of the Thirteenth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. 2022. Disponível em: <https://aclanthology.org/2022.lrec-1.539>
HAILU, T. T.; YU, J.; FANTAYE, T. G. A framework for word embedding based automatic text summarization and evaluation. Information, v. 11, n. 2, p. 78, 2020.
HAKUTA, K. Handbook of Automated Essay Evaluation: Current Applications and New Directions. Em: SHERMIS, M. D.; BURSTEIN, J. (Eds.). [s.l.] Routledge/Taylor & Francis Group, 2013. p. 347–353.
HALL, J. A Probabilistic Part-of-Speech Tagger with Suffix Probabilities. tese de doutorado—[s.l: s.n.].
HALLIDAY, M. A. K.; MATTHIESSEN, C. M. I. M. Construing Experience Through Meaning: A Language Based Approach to Cognition. [s.l.] Continuum, 1999.
HAPKE, H.; HOWARD, C.; LANE, H. Natural Language Processing in Action: Understanding, analyzing, and generating text with Python. [s.l.] Manning, 2019.
HARMAN, D. The Text Retrieval Conferences (TRECs): Providing a Test-Bed for Information Retrieval Systems. Bulletin of the American Society for Information Science, v. 24, n. 4, p. 11–13, 1998.
HARRIS, Z. S. Distributional Structure. Word, v. 10, n. 2-3, p. 146–162, 1954.
HARTMANN, N. S. et al. Portuguese word embeddings: Evaluating on word analogies and natural language tasks. Proceedings of Symposium in Information and Human Language Technology. Anais...[S.l.: s.n.]: 2017.
HARTMANN, N. S.; ALUÍSIO, S. M. Adaptação Lexical Automática em Textos Informativos do Português Brasileiro para o Ensino Fundamental. Linguamática, v. 12, n. 2, p. 3–27, dez. 2020.
HARTMANN PEIXOTO, F. Projeto Victor: relato do desenvolvimento da Inteligência Artificial na Repercussão Geral do Supremo Tribunal Federal. Revista Brasileira de Inteligência Artificial e Direito - RBIAD, v. 1, n. 1, p. 1–22, 2020.
HASEGAWA, T.; SEKINE, S.; GRISHMAN, R. Discovering relations among named entities from large corpora. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (acl-04). Anais...2004.
HASSAN, H. et al. Achieving Human Parity on Automatic Chinese to English News Translation. arXiv preprint 1803.05567, 2018.
HAUCH, V. et al. Linguistic Cues to Deception Assessed by Computer Programs: A Meta-analysis. Proceedings of the Workshop on Computational Approaches to Deception Detection. Anais...2012.
HAUSSER, R. The coordinator’s final report on the first Morpholympics. Em: HAUSSER, R. (Ed.). Linguistische Verifikation: Dokumentation zur Ersten Morpholympics 1994. [s.l.] Max Niemeyer Verlag, 1996. p. 167–181.
HAVASI, C.; SPEER, R.; ALONSO, J. ConceptNet 3: a Flexible, Multilingual Semantic Network for Common Sense Knowledge. Recent Advances in Natural Language Processing. Anais...Borovets, Bulgaria: To appear, 2007.
HAVIV, A. et al. Understanding Transformer Memorization Recall Through Idioms. Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Anais...Dubrovnik, Croatia: Association for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.19>
HAYES, P. Expanding the Horizons of Natural Language Interfaces. 18th Annual Meeting of the Association for Computational Linguistics. Anais...Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, jun. 1980. Disponível em: <https://aclanthology.org/P80-1019>
HAYES, P. J.; REDDY, D. R. Steps toward graceful interaction in spoken and written man-machine communication. International Journal of Man-Machine Studies, v. 19, n. 3, p. 231–284, 1983.
HE, K. et al. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. Anais...IEEE Computer Society, 2016. Disponível em: <https://doi.org/10.1109/CVPR.2016.90>
HE, P. et al. Deberta: decoding-Enhanced Bert with Disentangled Attention. 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. Anais...OpenReview.net, 2021. Disponível em: <https://openreview.net/forum?id=XPZIaotutsD>
HEALEY, P. G.; MILLS, G. J. A Dialogue Experimentation Toolkit. Proceedings of the Annual Meeting of the Cognitive Science Society. Anais...2009. Disponível em: <https://dialoguetoolkit.github.io/chattool/>
HEARST, M. A. Automatic acquisition of hyponyms from large text corpora. Proceedings of the 14th conference on Computational linguistics-Volume 2. Anais...Association for Computational Linguistics, 1992.
HEE, C. V.; LEFEVER, E.; HOSTE, V. SemEval-2018 Task 3: Irony Detection in English Tweets. Proceedings of the 12th International Workshop on Semantic Evaluation. Anais...2018.
HEEMAN, P. A. Dialogue transcription tools - TRAINS Technical Note 94-1. [s.l.] University of Rochester, 1995. Disponível em: <https://dl.acm.org/doi/abs/10.5555/898276>.
HEEMAN, P. A.; HIRST, G. Collaborating on Referring Expressions. Computational Linguistics, v. 21, n. 3, p. 351–382, 1995.
HEIKKILÄ, M. Why you shouldn’t trust AI search engines. Disponível em: <https://www.technologyreview.com/2023/02/14/1068498/why-you-shouldnt-trust-ai-search-engines/>. Acesso em: 9 abr. 2023.
HEIKKILÄ, M. The viral AI avatar app Lensa undressed me—without my consent. Disponível em: < https://www.technologyreview.com/2022/12/12/1064751/the-viral-ai-avatar-app-lensa-undressed-me-without-my-consent/>. Acesso em: 28 ago. 2023.
HEIM, I. File Change Semantics and the Familiarity Theory of Definiteness. Em: Formal Semantics. [s.l.] Wiley-Blackwell, 2008. p. 223–248.
HEINRICH, T.; MARCHI, F. TeamUFPR at ABSAPT 2022: Aspect Extraction with CRF and BERT. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, September 20, 2022. Anais...2022.
HELDNER, M.; EDLUND, J. Pauses, gaps and overlaps in conversations. Journal of Phonetics, v. 38, n. 4, p. 555–568, 2010.
HENDERSON, P. et al. Ethical challenges in data-driven dialogue systems. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. Anais...2018. Disponível em: <https://doi.org/10.1145/3278721.3278777>
HENDRICKX, I. et al. SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations between Pairs of Nominals. Proceedings of the 5th International Workshop on Semantic Evaluation. Anais...2010. Disponível em: <http://www.aclweb.org/anthology/S10-1006>
HENDRYCKS, D. et al. Measuring Massive Multitask Language Understanding. Proceedings of the International Conference on Learning Representations (ICLR). Anais...b2021.
HENDRYCKS, D. et al. Aligning AI With Shared Human Values. Proceedings of the International Conference on Learning Representations (ICLR). Anais...a2021.
HEUSDEN, R. VAN; KAMPS, J.; MARX, M. Neural Coreference Resolution for Dutch Parliamentary Documents with the DutchParliament Dataset. Data, v. 8, n. 2, 2023.
HICKE, Y. et al. Assessing the efficacy of large language models in generating accurate teacher responses. arXiv preprint arXiv:2307.04274, 2023.
HILGERT, J. G. A construção do sentido e da compreensão na conversa, mostrada em procedimentos meta-enunciativos. Linha D’Água, v. 25, n. 2, p. 107–129, 2012.
HILGERT, J. G. A emergência da compreensão na conversa, mostrada no trabalho colaborativo de otimização de enunciados. Todas as Letras-Revista de Lı́ngua e Literatura, v. 16, n. 1, 2014.
HIRSCHMAN, L. The evolution of Evaluation: Lessons from the Message Understanding Conferences. Computer Speech and Language, v. 12, n. 4, p. 281–305, 1998.
HIRSCHMAN, L.; THOMPSON, H. S. Overview of Evaluation in Speech and Natural Language Processing. Em: Survey of the State of the Art in Human Language Technology. USA: Cambridge University Press, 1997. p. 409–414.
HITZLER, A. H. Y. A. M. S. M. A. G. B. A. W. R. A. A. S. A. A. H. M. A. K. T. A. J. M. M. A. A. M. A. J. P. A. P. Multimodal mental health analysis in social media. PLOS ONE, v. 15, n. 4, p. 1–27, 2020.
HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische Universität München, v. 91, n. 1, p. 31, 1991.
HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural Computation, v. 9, n. 8, p. 1735–1780, nov. 1997.
HOFFMANN, J. et al. Training Compute-Optimal Large Language Models. CoRR, v. abs/2203.15556, 2022.
HOFMANN, T. Probabilistic Latent Semantic Indexing. Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’99). Anais...New York, NY, USA: Association for Computing Machinery, 1999.
HOLTZMAN, A. et al. The Curious Case of Neural Text Degeneration. ICLR. Anais...OpenReview.net, 2020. Disponível em: <http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20>
HORA, N. DA. Coded Bias: linguagem acessível para entender vieses em algoritmos. Disponível em: < https://mittechreview.com.br/coded-bias-linguagem-acessivel-para-entender-vieses-em-algoritmos/>. Acesso em: 7 abr. 2023.
HORA, N. DA. Ética em IA: a pergunta que não estamos fazendo. Disponível em: <https://mittechreview.com.br/etica-em-ia-a-pergunta-que-nao-estamos-fazendo/>. Acesso em: 7 abr. 2023.
HORNIK, K.; STINCHCOMBE, M. B.; WHITE, H. Multilayer feedforward networks are universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, 1989.
HORSMANN, T.; ZESCH, T. Assigning Fine-grained PoS Tags based on High-precision Coarse-grained Tagging. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Anais...Osaka, Japan: The COLING 2016 Organizing Committee, dez. 2016. Disponível em: <https://aclanthology.org/C16-1032>
HOU, Y.; MARKERT, K.; STRUBE, M. A Rule-Based System for Unrestricted Bridging Resolution: Recognizing Bridging Anaphora and Finding Links to Antecedents. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Anais...Doha, Qatar: 2014. Disponível em: <http://aclweb.org/anthology/D/D14/D14-1222.pdf>
HOULSBY, N. et al. Parameter-Efficient Transfer Learning for NLP. (K. Chaudhuri, R. Salakhutdinov, Eds.)Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Anais...: Proceedings of Machine Learning Research.PMLR, 2019. Disponível em: <http://proceedings.mlr.press/v97/houlsby19a.html>
HOVY, E.; KING, M.; POPESCU-BELIS, A. An introduction to MT evaluation. Proceedings of Machine Translation Evaluation: Human Evaluators meet Automated Metrics. Workshop at the LREC 2002 Conference. Las Palmas, Spain. Anais...2002.
HOWARD, J.; RUDER, S. Universal Language Model Fine-tuning for Text Classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <^5^>
HSU, W.-N. et al. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, v. 29, p. 3451–3460, 2021.
HU, E. J. et al. LoRA: Low-Rank Adaptation of Large Language Models. The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Anais...OpenReview.net, 2022. Disponível em: <https://openreview.net/forum?id=nZeVKeeFYf9>
HU, M.; LIU, B. Mining Opinion Features in Customer Reviews. Proceedings of the 19th National Conference on Artifical Intelligence. Anais...2004.
HUANG, J.-T.; HASEGAWA-JOHNSON, M.; SHIH, C. Unsupervised prosodic break detection in Mandarin speech. Proc. Speech Prosody 2008. Anais...2008.
HUANG, X.; ACERO, A.; HON, H. W. Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. [s.l.] Prentice Hall PTR, 2001.
HUSSAIN, A. S.; THOMAS, A. Large Language Models for Judicial Entity Extraction: A Comparative Study., 2024. Disponível em: <https://arxiv.org/abs/2407.05786>
HUTCHINS, J. Towards a definition of example-based machine translation., Proceedings of Second Workshop on Example-Based Machine Translation; Anais...2005.
HUTCHINS, W. Machine Translation: A Concise History. Journal of Translation Studies: Special Issue on The Teaching of Computer-aided Translation, v. 13, p. 1–2, 2010.
HUTCHINS, W. J. Machine translation over fifty years. Histoire, Epistemologie, Langage, v. XXII, n. 1, p. 7–31, 2001.
HWANG, A.; HIDEY, C. Confirming the Non-compositionality of Idioms for Sentiment Analysis. Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019). Anais...Florence, Italy: Association for Computational Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5114>
IFTIKHAR, A.; UL QOUNAIN JAFFRY, S. W.; MALIK, M. K. Information Mining From Criminal Judgments of Lahore High Court. IEEE Access, v. 7, p. 59539–59547, 2019.
IGNAT, O. et al. A PhD Student’s Perspective on Research in NLP in the Era of Very Large Language Models., 2023. Disponível em: <https://arxiv.org/abs/2305.12544>
ILARI, R.; GERALDI, J. W. Semântica. [s.l.] Ética, 1985.
IMOTIONS. Eye Tracking - The Complete Pocket Guide. [s.l.] www.imotions.com, 2017.
INFOBASE. Inteligência Artificial e a perpetuação do racismo. Disponível em: <https://infobase.com.br/inteligencia-artificial-e-a-perpetuacao-do-racismo/>. Acesso em: 28 ago. 2023.
IPM. INAF Brasil 2018: Indicador de Alfabetismo Funcional - Resultados Preliminares. Instituto Paulo Montenegro, 2018.
ITO, K. The LJ speech dataset. https://keithito.com/LJ-Speech-Dataset/, 2017.
IVGI, M.; SHAHAM, U.; BERANT, J. Efficient Long-Text Understanding with Short-Text Models. Transactions of the Association for Computational Linguistics, v. 11, p. 284–299, 2023.
JACINTHO, F.; PENHA, A. Interfaces conversacionais: Análise de tarefas para Siri e Google Now. Ergodesign & HCI, v. 4, n. 2, p. 72–81, 2016.
JACKSON, P.; MOULINIER, I. Natural Language Processing for Online Applications – Text retrieval, extraction and categorization. [s.l.] John Benjamins, 2002.
JACOBS, R. A. et al. Adaptive mixtures of local experts. Neural computation, v. 3, n. 1, p. 79–87, 1991.
JACOBSEN, A. et al. FAIR principles: interpretations and implementation considerations. Data intelligenceMIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info …, 2020.
JAHAN, M. S.; OUSSALAH, M. A systematic review of hate speech automatic detection using natural language processing. Neurocomputing, 2023.
JAIN, S.; WALLACE, B. C. Attention is not Explanation. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Anais...Minneapolis, Minnesota: Association for Computational Linguistics, 2019. Disponível em: <https://aclanthology.org/N19-1357>
JARGAS, A. M. Expressões Regulares - 5a edição: Uma Abordagem Divertida. [s.l.] Novatec Editora, 2016.
JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), v. 20, n. 4, p. 422–446, 2002.
JEON, J. H.; LIU, Y. Semi-supervised Learning for Automatic Prosodic Event Detection Using Co-training Algorithm. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Anais...Suntec, Singapore: Association for Computational Linguistics, ago. 2009. Disponível em: <https://aclanthology.org/P09-1061>
JERONIMO, C. et al. Characterization of Fake News Based on Subjectivity Lexicons. Journal of Data Intelligence, v. 1, p. 419–441, dez. 2020.
JI, Z. et al. Survey of Hallucination in Natural Language Generation. ACM Comput. Surv., v. 55, n. 12, mar. 2023.
JIANG, A. Q. et al. Mistral 7B., 2023. Disponível em: <https://arxiv.org/abs/2310.06825>
JIANG, R.; BANCHS, R. E.; LI, H. Evaluating and Combining Named Entity Recognition Systems. Proceedings of the Sixth Named Entity Workshop, joint with 54th ACL. Anais...2016. Disponível em: <https://www.aclweb.org/anthology/W16-2703.pdf>
JIANG, S. et al. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts. Journal of Biomedical Informatics, v. 111, p. 103581, 2020.
JIANG, S. et al. Irony Detection in the Portuguese Language using BERT. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), XXXVII International Conference of the Spanish Society for Natural Language Processing., Málaga, Spain, September, 2021. Anais...2021.
JIN, X. et al. Lifelong Pretraining: Continually Adapting Language Models to Emerging Corpora. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...Seattle, United States: Association for Computational Linguistics, jul. 2022. Disponível em: <https://aclanthology.org/2022.naacl-main.351>
JOHNSON, K. Acoustic and Auditory Phonetics. [s.l.] Wiley, 2011.
JOHNSTONE, M. A.-M. A. T. In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation. Clinical Psychological Science, v. 6, n. 4, p. 529–542, 2018.
JONES, K. H. et al. Toward the Development of Data Governance Standards for Using Clinical Free-Text Data in Health Research: Position Paper. J Med Internet Res, v. 22, n. 6, p. e16760, jun. 2020.
JONES, K. S. What might be in a summary? Information retrieval, v. 93, n. 1, p. 9–26, 1993.
JONNALAGADDA, S.; GONZALEZ, G. Biosimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction. AMIA Annual Symposium Proceedings, p. 351–356, 2010.
JOOS, M. Description of language design. Journal of Acoustical Society of America - JASA, v. 22, p. 701–708, 1950.
JOSÉ, M. M. et al. Integrating Question Answering and Text-to-SQL in Portuguese. (V. Pinheiro et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2022.
JOSHI, M. et al. BERT for Coreference Resolution: Baselines and Analysis. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...Hong Kong, China: Association for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1588>
JOSHI, M. et al. SpanBERT: Improving Pre-training by Representing and Predicting Spans. Transactions of the Association for Computational Linguistics, v. 8, p. 64–77, 2020.
JOYCE, J. M. Kullback-Leibler Divergence. Em: LOVRIC, M. (Ed.). International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. p. 720–722.
JULIÃO, A. Algoritmo do Google: Veja o impacto que tem no SEO. Disponível em: <https://blog.ajestrategia.com.br/algoritmo-do-google-veja-o-impacto-que-tem-no-seo/>.
JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. 3rd. ed. USA: Prentice Hall PTR, 2023.
JUSTIÇA - CNJ, C. N. DE. Conselho Nacional de Justiça — Justiça em Números. https://www.cnj.jus.br/pesquisas-judiciarias/justica-em-numeros/, maio 24DC.
KAHANE, S.; COURTIN, M.; GERDES, K. Multi-word annotation in syntactic treebanks - Propositions for Universal Dependencies. Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories. Anais...Prague, Czech Republic: 2017. Disponível em: <https://aclanthology.org/W17-7622>
KAHLE, P. et al. Transkribus-a service platform for transcription, recognition and retrieval of historical documents. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Anais...IEEE, 2017.
KAMBHATLA, N. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. Proceedings of the ACL interactive poster and demonstration sessions. Anais...2004.
KANDO, N. NTCIR and Its Background – Evaluation Workshop on Information Access Technologies and Test Collections. Journal of the Japanese Society for Artificial Intelligence, v. 17, n. 3, p. 296–300, 2002.
KANITZ, A.; FRANK, I. Aprendizagem enquanto produção conjunta de conhecimento: avançando tarefas e alcançando entendimentos satisfatórios na fala-em-interação. Revista Brasileira de Linguı́stica Aplicada, v. 14, p. 111–140, 2014.
KANITZ, A.; LUZ, R. L. Letramento multimodal e construção conjunta de conhecimento na fala-em-interação. Revista Brasileira de Linguı́stica Aplicada, v. 19, p. 603–633, 2019.
KANTAYYA, S. Coded Bias. Disponível em: < https://www.codedbias.com>. Acesso em: 7 abr. 2023.
KAPOOR, A. et al. HLDC: Hindi Legal Documents Corpus. Findings of the Association for Computational Linguistics: ACL 2022. Anais...Association for Computational Linguistics, 2022.
KARPAS, E. et al. MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning., 2022. Disponível em: <https://arxiv.org/abs/2205.00445>
KATCHAPAKIRIN, K. et al. Facebook Social Media for Depression Detection in the Thai Community. 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). Anais...2018.
KATO, A.; SHINDO, H.; MATSUMOTO, Y. Construction of an English Dependency Corpus incorporating Compound Function Words. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...Portorož, Slovenia: European Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1263>
KE, Z. et al. Continual Pre-training of Language Models., 2023. Disponível em: <https://arxiv.org/abs/2302.03241>
KENEDY, E.; OTHERO, G. DE Á. Para conhecer sintaxe. São Paulo: Contexto, 2018.
KHAYRALLAH, H.; KOEHN, P. On the Impact of Various Types of Noise on Neural Machine Translation. Proceedings of the 2nd Workshop on Neural Machine Translation and Generation. Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/W18-2709>
KIANPOUR, M.; WEN, S.-F. Timing Attacks on Machine Learning: State of the Art. Intelligent Systems Conference. Anais...Springer, 2020.
KILGARRIFF, A. I Don’t Believe in Word Senses. Computers and the Humanities, 1997.
KILGARRIFF, A. Thesauruses for Natural Language Processing. Proceedings of Natural Language Processing and Knowledge Engineering. Anais...2003. Disponível em: <https://www.kilgarriff.co.uk/Publications/2003-K-Beijing-thes4NLP.pdf>
KIM, J. et al. Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search. arXiv preprint arXiv:2005.11129, 2020.
KIM, J.; KONG, J.; SON, J. Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech. International Conference on Machine Learning. Anais...PMLR, 2021.
KIM, S. N. et al. SemEval-2010 Task 5 : Automatic Keyphrase Extraction from Scientific Articles. Proceedings of the 5th International Workshop on Semantic Evaluation. Anais...Uppsala, Sweden: Association for Computational Linguistics, jul. 2010. Disponível em: <https://aclanthology.org/S10-1004>
KINCAID, J. P. et al. Derivation of new readability formulas (automated readability index, fog count, and flesch reading ease formula) for Navy enlisted personnel. Research Branch Report, p. 8–75, 1975.
KING, M. Evaluating Natural Language Processing Systems. Communications of the ACM, v. 39, n. 1, p. 73–79, jan. 1996.
KIPPER, K.; DANG, H. T.; PALMER, M. Class-Based Construction of a Verb Lexicon. Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. Anais...AAAI Press, 2000.
KIRK, H. et al. Handling and Presenting Harmful Text in NLP Research. Findings of the Association for Computational Linguistics: EMNLP 2022. Anais...Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, dez. 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.35>
KIRSTAIN, Y.; RAM, O.; LEVY, O. Coreference Resolution without Span Representations. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Anais...2021.
KITZINGER, C. Repair. Em: The handbook of conversation analysis. [s.l.] Wiley Online Library, 2012. p. 229–256.
KLATT, D. H. Software for a cascade/parallel formant synthesizer. the Journal of the Acoustical Society of America, v. 67, n. 3, p. 971–995, 1980.
KLIE, J.-C. et al. The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation. Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations. Anais...Santa Fe, USA: Association for Computational Linguistics, 2018. Disponível em: <http://tubiblio.ulb.tu-darmstadt.de/106270/>
KNUTH, D. E. Fundamental Algorithms. The Art of Computer Programming. 3. ed. [s.l.] Addison-Wesley, 1997. v. 1
KOCH, I. G. V. O texto e a construção do sentido. 7. ed. Campinas, SP: Contexto, 2003.
KOCH, I. G. V. Digressão e Relevância Conversacional. Cadernos de Estudos Linguísticos, v. 37, p. 81–91, 2012.
KOCH, I. G. V.; TRAVAGLIA, L. Texto e coerência. 13. ed. [s.l.] Cortez, 2012.
KOEHN, P. et al. Moses: Open Source Toolkit for Statistical Machine Translation. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions. Anais...Prague, Czech Republic: Association for Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/P07-2045>
KOEHN, P. Statistical Machine Translation. [s.l.] Cambridge University Press, 2009.
KOEHN, P. Neural Machine Translation. [s.l.] Cambridge University Press, 2020.
KOEHN, P.; OCH, F. J.; MARCU, D. Statistical phrase-based translation. Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - NAACL ’03. Anais...Association for Computational Linguistics, 2003. Disponível em: <http://dx.doi.org/10.3115/1073445.1073462>
KÖHN, A. Incremental Natural Language Processing: Challenges, Strategies, and Evaluation. Proceedings of the 27th International Conference on Computational Linguistics. Anais...Santa Fe, New Mexico, USA: Association for Computational Linguistics, ago. 2018. Disponível em: <https://aclanthology.org/C18-1253>
KOHO, M. et al. WarSampo Knowledge Graph: Finland in the Second World War as Linked Open Data. Semantic Web – Interoperability, Usability, Applicability, v. 12, n. 2, p. 265–278, 2021.
KOIZUMI, Y. et al. Miipher: A Robust Speech Restoration Model Integrating Self-Supervised Speech and Text Representations. arXiv preprint arXiv:2303.01664, b2023.
KOIZUMI, Y. et al. LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus. arXiv preprint arXiv:2305.18802, a2023.
KOJIMA, T. et al. Large Language Models are Zero-Shot Reasoners. NeurIPS. Anais...2022. Disponível em: <http://papers.nips.cc/paper\_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html>
KOLECK, T. A. et al. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc, v. 26, n. 4, p. 364–379, abr. 2019.
KONRAD, P. G. A busca vs. o resguardo de informações acerca dos crimes em interrogatórios policiais: um olhar sob a perspectiva da fala-em-interação. mathesis—[s.l.] Universidade do Vale do Rio dos Sinos, 2018.
KONSTANTINOVA, N. Review of relation extraction methods: What is new out there? Analysis of Images, Social Networks and Texts: Third International Conference, AIST 2014, Yekaterinburg, Russia, April 10-12, 2014, Revised Selected Papers 3. Anais...Springer, 2014.
KOPPATZ, M. et al. Automatic generation of factual news headlines in finnish. arXiv preprint arXiv:2212.02170, 2022.
KORKONTZELOS, I. Unsupervised Learning of Multiword Expressions. tese de doutorado—York, UK: University of York, 2011.
KORNILOVA, A.; EIDELMAN, V. BillSum: A Corpus for Automatic Summarization of US Legislation. Proceedings of the 2nd Workshop on New Frontiers in Summarization. Anais...Association for Computational Linguistics, 2019.
KORSKO, P. The narrative shape of two-party complaints in Portuguese: A discourse analytic study. tese de doutorado—[s.l.] Teachers College, Columbia University, 2004.
KOWAL, S.; O’CONNELL, D. C. Transcription as a crucial step of data analysis. The SAGE handbook of qualitative data analysis, p. 64–79, 2014.
KRAHMER, E.; DEEMTER, K. VAN. Computational generation of referring expressions: A survey. Computational Linguistics, v. 38, n. 1, p. 173–218, 2012.
KRAHMER, E.; ERK, S. VAN; VERLEG, A. Graph-Based Generation of Referring Expressions. Computational Linguistics, v. 29, n. 1, p. 53–72, 2003.
KRAHMER, E.; THEUNE, M. Efficient context-sensitive generation of referring expressions. Em: DEEMTER, K. VAN; KIBBLE, R. (Eds.). Information sharing: Reference and presupposition in language generation and interpretation. Stanford, CA: CSLI, 2002. p. 223–264.
KRINGS, H. P. Repairing Texts: Empirical Investigations of Machine Translation Post-editing Processes. [s.l.] Kent State University Press, 2001.
KRIPPENDORFF, K. Estimating the Reliability, Systematic Error and Random Error of Interval Data. Educational and Psychological Measurement, v. 30, n. 1, p. 61–70, 1970.
KRUSE, J. S.; BARBOSA, P. A. Alinha-PB: a phonetic aligner for Brazilian Portuguese. Journal of Communication and Information Systems, v. 36, n. 1, p. 192–199, dez. 2021.
KUDO, T. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/P18-1007>
KUKICH, K. Design of a Knowledge-based Report Generator. Proceedings of the 21st Annual Meeting on Association for Computational Linguistics. Anais...: ACL’83.Cambridge, Massachusetts: Association for Computational Linguistics, 1983. Disponível em: <https://doi.org/10.3115/981311.981340>
KULKARNI, M. et al. Towards a Unified Multi-Domain Multilingual Named Entity Recognition Model. Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Anais...Dubrovnik, Croatia: Association for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.161>
KUMAR, D. et al. Understanding the Behaviors of Toxic Accounts on Reddit. Proceedings of the ACM Web Conference 2023. Anais...2023.
KUMAWAT, D.; JAIN, V. POS Tagging Approaches: A Comparison. International Journal of Computer Applications, v. 118, n. 6, p. 32–38, maio 2015.
KUO, Y. et al. Community-Based Game Design: Experiments on Social Games for Commonsense Data Collection. Proceedings of the ACM SIGKDD Workshop on Human Computation. Anais...: HCOMP ’09.New York, NY, USA: Association for Computing Machinery, 2009. Disponível em: <https://doi.org/10.1145/1600150.1600154>
KUZI, S.; SHTOK, A.; KURLAND, O. Query expansion using word embeddings. Proceedings of the 25th ACM international on conference on information and knowledge management. Anais...2016.
KYLE, K. K. J. F. S.; JOSE, K. A. C. Y. B.; SOTELO, S. M. Char2wav: End-to-end speech synthesis. International Conference on Learning Representations, workshop. Anais...2017.
LACERDA, A. R. T. DE; AGUIAR, C. S. R. FLOSS FAQ Chatbot Project Reuse: How to Allow Nonexperts to Develop a Chatbot. Proceedings of the 15th International Symposium on Open Collaboration. Anais...: OpenSym ’19.New York, NY, USA: Association for Computing Machinery, 2019. Disponível em: <https://doi.org/10.1145/3306446.3340823>
LAFFERTY, J. D.; MCCALLUM, A.; PEREIRA, F. C. N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of the Eighteenth International Conference on Machine Learning. Anais...: ICML ’01.San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. Disponível em: <https://dl.acm.org/doi/abs/10.5555/645530.655813>
LAKHOTIA, K. et al. On Generative Spoken Language Modeling from Raw Audio. Transactions of the Association for Computational Linguistics, v. 9, p. 1336–1354, 2021.
LAMPLE, G. et al. Neural Architectures for Named Entity Recognition. (K. Knight, A. Nenkova, O. Rambow, Eds.)Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...San Diego, California: Association for Computational Linguistics, jun. 2016.
LAN, Z. et al. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Anais...OpenReview.net, 2020. Disponível em: <https://openreview.net/forum?id=H1eA7AEtvS>
LARSSON, S. User-initiated Sub-dialogues in State-of-the-art Dialogue Systems. Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. Anais...Saarbrücken, Germany: Association for Computational Linguistics, ago. 2017. Disponível em: <https://aclanthology.org/W17-5503>
LÄUBLI, S. et al. A set of recommendations for assessing human–machine parity in language translation. Journal of Artificial Intelligence Research, v. 67, p. 653–672, 2020.
LÄUBLI, S.; SENNRICH, R.; VOLK, M. Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation. Proceedings of EMNLP. Anais...Brussels, Belgium: 2018.
LAVIE, A.; AGARWAL, A. Meteor: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments. Proceedings of the Second Workshop on Statistical Machine Translation. Anais...: StatMT’07.Prague, Czech Republic: 2007. Disponível em: <http://dl.acm.org/citation.cfm?id=1626355.1626389>
LAZER, D. M. J. et al. The science of fake news. Science, v. 359, n. 6380, p. 1094–1096, 2018.
LAZZARI, R. R.; FINATTO, M. J. B. Exame do vocabulário médico no Português no século XVIII: contribuições da lexicometria para o desenho de um dicionário histórico. Mandinga-Revista de Estudos Linguı́sticos (ISSN: 2526-3455), v. 7, n. 1, p. 102–123, 2023.
LEACOCK, C. et al. Automated Grammatical Error Detection for Language Learners. [s.l.] Morgan; Claypool Publishers, 2010.
LEAL, S. E. et al. Avaliação automática da complexidade de sentenças do português brasileiro para o domínio rural. Symposium in Information and Human Language Technology - STIL. Anais...SBC, 2019.
LEAL, S. E. et al. Using Eye-tracking Data to Predict the Readability of Brazilian Portuguese Sentences in Single-task, Multi-task and Sequential Transfer Learning Approaches. Proceedings of the 28th International Conference on Computational Linguistics. Anais...Barcelona, Spain (Online): International Committee on Computational Linguistics, dez. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.coling-main.512>
LEAL, S. E. Predição da complexidade sentencial do português brasileiro escrito, usando métricas linguísticas, psicolinguísticas e de rastreamento ocular. tese de doutorado—[s.l.] Universidade de São Paulo, 2021.
LEAL, S. E. et al. RastrOS Project: Natural Language Processing contributions to the development of an eye-tracking corpus with predictability norms for Brazilian Portuguese. Language Resources and Evaluation, p. 1333–1372, 2022.
LEAL, S. E. et al. NILC-Metrix: assessing the complexity of written and spoken language in Brazilian Portuguese. Language Resources and Evaluation, 2023.
LEAL, S. E.; DURAN, M. S.; ALUÍSIO, S. M. A Nontrivial Sentence Corpus for the Task of Sentence Readability Assessment in Portuguese. Proceedings of the 27th International Conference on Computational Linguistics. Anais...Association for Computational Linguistics, ago. 2018.
LEBRET, R.; GRANGIER, D.; AULI, M. Neural Text Generation from Structured Data with Application to the Biography Domain. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Anais...: EMNLP’16.Austin, Texas: Association for Computational Linguistics, 2016. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/D/D16/D16-1128.pdf>
LÉCHELLE, W.; GOTTI, F.; LANGLAIS, P. WiRe57: A Fine-Grained Benchmark for Open Information Extraction. arXiv preprint arXiv:1809.08962, 2018.
LEE, C. VAN DER et al. Human evaluation of automatically generated text: Current trends and best practice guidelines. Computer Speech & Language, v. 67, p. 101151, 2021.
LEE, C. VAN DER; KRAHMER, E.; WUBBEN, S. PASS: A Dutch data-to-text system for soccer, targeted towards specific audiences. Proceedings of INLG-2017. Anais...Santiago de Compostela, Spain: Association for Computational Linguistics, a2017. Disponível em: <http://aclweb.org/anthology/W17-3513>
LEE, H. et al. Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011 shared task. Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. Anais...2011.
LEE, H. et al. Deterministic coreference resolution based on entity-centric, precision-ranked rules. Computational Linguistics, v. 39, n. 4, p. 885–916, 2013.
LEE, J. et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, v. 36, n. 4, p. 1234–1240, set. 2019.
LEE, K. et al. End-to-end neural coreference resolution. arXiv preprint arXiv:1707.07045, b2017.
LEE, S. et al. A Survey on Evaluation Metrics for Machine Translation. Mathematics, v. 11, n. 4, 2023.
LEHNERT, W.; SUNDHEIM, B. A performance evaluation of text-analysis technologies. AI magazine, v. 12, n. 3, p. 81–81, 1991.
LEIDNER, J. L.; PLACHOURAS, V. Ethical by Design: Ethics Best Practices for Natural Language Processing. Proceedings of the First ACL Workshop on Ethics in Natural Language Processing. Anais...Valencia, Spain: Association for Computational Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/W17-1604>
LEITÃO, M. M.; RIBEIRO, A. J. C.; MAIA, M. Penalidade do Nome Repetido e Rastreamento Ocular em Português Brasileiro. Revista LinguíStica, v. v8 n2, 2012.
LEITE, H. et al. WRITEME: uma Ferramenta de Auxílio à Escrita de READMEs Baseada em Dados Abertos. Anais do XVII Congresso Latino-Americano de Software Livre e Tecnologias Abertas. Anais...Porto Alegre, RS, Brasil: SBC, 2020.
LEITNER, E.; REHM, G.; MORENO-SCHNEIDER, J. Fine-Grained Named Entity Recognition in Legal Documents. (M. Acosta et al., Eds.)Semantic Systems. The Power of AI and Knowledge Graphs. Anais...Cham: Springer International Publishing, 2019.
LENAT, D. B.; GUHA, R. V. Building large knowledge-based systems: representation and inference in the Cyc project. [s.l.] Addison-Wesley, 1989.
LESK, M. The seven ages of information retrieval., 1995. Disponível em: <https://archive.ifla.org/VI/5/op/udtop5/udt-op5.pdf>
LESTER, B.; AL-RFOU, R.; CONSTANT, N. The Power of Scale for Parameter-Efficient Prompt Tuning. (M.-F. Moens et al., Eds.)Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.243>
LEVELT, W. J. Speaking: From intention to articulation. [s.l.] MIT press, 1993.
LEVINSON, S. C. Speech Acts. Em: The Oxford Handbook of Pragmatics. [s.l.] Oxford University Press, 2017.
LEWIS, D. Scorekeeping in a language game. Em: Semantics from different points of view. [s.l.] Springer, 1979. p. 172–187.
LEWIS, M. et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. (D. Jurafsky et al., Eds.)Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Anais...Association for Computational Linguistics, a2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.703>
LEWIS, P. S. H. et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. (H. Larochelle et al., Eds.)Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Anais...b2020. Disponível em: <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>
LGPD. Lei Geral de Proteção de Dados Pessoais (LGPD). Disponível em: <https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm>. Acesso em: 9 abr. 2023.
LI, J. et al. Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure. arXiv preprint arXiv:2004.05080, 2020.
LI, P. et al. Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models. arXiv preprint arXiv:2304.03271, a2023.
LI, Q.; JI, H. Incremental joint extraction of entity mentions and relations. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...2014.
LI, R. et al. StarCoder: may the source be with you! CoRR, v. abs/2305.06161, b2023.
LI, S. et al. Defining a New NLP Playground. (H. Bouamor, J. Pino, K. Bali, Eds.)Findings of the Association for Computational Linguistics: EMNLP 2023. Anais...Singapore: Association for Computational Linguistics, dez. c2023. Disponível em: <https://aclanthology.org/2023.findings-emnlp.799>
LI, W. W. et al. BERT Is Not The Count: Learning to Match Mathematical Statements with Proofs. (A. Vlachos, I. Augenstein, Eds.)Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May 2-6, 2023. Anais...Association for Computational Linguistics, d2023. Disponível em: <https://aclanthology.org/2023.eacl-main.260>
LI, X. L.; LIANG, P. Prefix-Tuning: Optimizing Continuous Prompts for Generation. (C. Zong et al., Eds.)Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.acl-long.353>
LI, X.; ROTH, D. Learning question classifiers. COLING 2002: The 19th International Conference on Computational Linguistics. Anais...2002.
LI, Y. et al. MAGE: Machine-generated Text Detection in the Wild. (L.-W. Ku, A. Martins, V. Srikumar, Eds.)Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Bangkok, Thailand: Association for Computational Linguistics, ago. 2024.
LIANG, X. et al. Contrastive Demonstration Tuning for Pre-trained Language Models. (Y. Goldberg, Z. Kozareva, Y. Zhang, Eds.)Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022. Anais...Association for Computational Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.56>
LIESENFELD, A.; LOPEZ, A.; DINGEMANSE, M. The timing bottleneck: Why timing and overlap are mission-critical for conversational user interfaces, speech recognition and dialogue systems. Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue. Anais...Prague, Czechia: Association for Computational Linguistics, set. 2023. Disponível em: <https://aclanthology.org/2023.sigdial-1.45>
LIKERT, R. A Technique for the Measurement of Attitudes. [s.l.] Archives of Psychology, 1932.
LIMA, A. DA S.; BORGES, V. R. Training and evaluating Named Entity Recognition Models using a Legal Corpus of publications from Government Gazettes. 2022.
LIMA, J. P.; COSTA, J. A.; ARAÚJO, D. C. Comparison of Feature Extraction Methods for Brazilian Legal Documents Clustering. 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI). Anais...IEEE, 2021. Disponível em: <https://doi.org/10.1109/LA-CCI48322.2021.9769839>
LIMA, T. B. DE et al. Avaliação Automática de Redação: Uma revisáo sistemática. Revista Brasileira de Informática na Educação, v. 31, p. 205--221, maio 2023.
LIN, C. et al. SenseMood: Depression Detection on Social Media. Em: 2020 International Conference on Multimedia Retrieval. New York, USA: Association for Computing Machinery, 2020a. p. 407–411.
LIN, C.-H. et al. Rich prosodic information exploration on spontaneous Mandarin speech. 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP). Anais...Tianjin: 2016.
LIN, C.-H. et al. Hierarchical prosody modeling for Mandarin spontaneous speech. The Journal of the Acoustical Society of America, v. 145, n. 4, p. 2576–2596, 2019.
LIN, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. Text Summarization Branches Out. Anais...Barcelona, Spain: Association for Computational Linguistics, jul. 2004. Disponível em: <https://aclanthology.org/W04-1013>
LIN, D. Automatic Identification of Non-compositional Phrases. Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. Anais...College Park, Maryland, USA: Association for Computational Linguistics, jun. 1999. Disponível em: <https://aclanthology.org/P99-1041>
LIN, J.; NOGUEIRA, R.; YATES, A. Pretrained Transformers for Text Ranking: BERT and Beyond. arXiv preprint arXiv:2010.06467, b2020.
LINARDATOS, P.; PAPASTEFANOPOULOS, V.; KOTSIANTIS, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy, v. 23, n. 1, 2021.
LIPTON, Z. C.; STEINHARDT, J. Troubling Trends in Machine Learning Scholarship: Some ML papers suffer from flaws that could mislead the public and stymie future research. Queue, v. 17, n. 1, p. 45–77, 2019.
LITMAN, D. J.; ALLEN, J. F. A plan recognition model for subdialogues in conversations. Cognitive science, v. 11, n. 2, p. 163–200, 1987.
LIU, B. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 2012.
LIU, C.-W. et al. How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Anais...Austin, Texas: Association for Computational Linguistics, nov. a2016. Disponível em: <https://aclanthology.org/D16-1230>
LIU, H.; SINGH, P. Commonsense Reasoning in and Over Natural Language. (M. Gh. Negoita, R. J. Howlett, L. C. Jain, Eds.)Knowledge-Based Intelligent Information and Engineering Systems. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
LIU, N. F. et al. Lexical Semantic Recognition. Proceedings of the 17th Workshop on Multiword Expressions (MWE 2021). Anais...Online: Association for Computational Linguistics, a2021. Disponível em: <https://aclanthology.org/2021.mwe-1.6>
LIU, T.; YAO, J.-G.; LIN, C.-Y. Towards improving neural named entity recognition with gazetteers. Proceedings of the 57th annual meeting of the association for computational linguistics. Anais...a2019.
LIU, Y. et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach., b2019. Disponível em: <https://arxiv.org/abs/1907.11692>
LIU, Y. et al. Multilingual Denoising Pre-training for Neural Machine Translation. Trans. Assoc. Comput. Linguistics, v. 8, p. 726–742, 2020.
LIU, Y.; HEARNE, J.; CONRAD, B. Recognizing proper names in ur iii texts through supervised learning. The Twenty-Ninth International Flairs Conference. Anais...b2016.
LIU, Y.; LAPATA, M. Text summarization with pretrained encoders. arXiv preprint arXiv:1908.08345, 2019.
LIU, Z. et al. De-identification of clinical notes via recurrent neural network and conditional random field. J Biomed Inform, v. 75S, p. S34–S42, jun. 2017.
LIU, Z. et al. A Robustly Optimized BERT Pre-Training Approach with Post-Training. Chinese Computational Linguistics: 20th China National Conference, CCL 2021, Hohhot, China, August 13–15, 2021, Proceedings. Anais...Berlin, Heidelberg: Springer-Verlag, b2021. Disponível em: <https://doi.org/10.1007/978-3-030-84186-7_31>
LIVESO. O que é BERT? - O mais recente algoritmo da Google. Disponível em: <https://liveseo.com.br/seo/o-que-e-bert-o-mais-recente-algoritmo-da-google/#:~:text=Bem%2C%20o%20BERT%2C%20de%20maneira,respostas%20possíveis%20para%20seus%20usuários>.
LO, C. YiSi - a Unified Semantic MT Quality Evaluation and Estimation Metric for Languages with Different Levels of Available Resources. Proceedings of the Fourth Conference on Machine Translation, WMT 2019, Florence, Italy, August 1-2, 2019 - Volume 2: Shared Task Papers, Day 1. Anais...2019. Disponível em: <https://doi.org/10.18653/v1/w19-5358>
LO, C.; WU, D. MEANT: An inexpensive, high-accuracy, semi-automatic metric for evaluating translation utility based on semantic roles. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA. Anais...2011. Disponível em: <https://aclanthology.org/P11-1023/>
LO, S. L. et al. Multilingual Sentiment Analysis: From Formal to Informal and Scarce Resource Languages. Artificial Intelligence Review, 2017.
LODER, L. L.; GONZALEZ, P. C.; GARCEZ, P. M. Reparo em terceira posição e intersubjetividade na fala-em-interação em português brasileiro. Veredas-Revista de Estudos Linguı́sticos, v. 6, n. 2, 2002.
LOMMEL, A.; MELBY, A. Tutorial: MQM-DQF: A Good Marriage (Translation Quality for the 21st Century). Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 2: User Track). Anais...Boston, MA: Association for Machine Translation in the Americas, mar. 2018. Disponível em: <https://aclanthology.org/W18-1925>
LOPE, J.; GRAÑA, M. An ongoing review of speech emotion recognition. Neurocomputing, 2023.
LOPES, C. DE S. et al. Trend in the prevalence of depressive symptoms in Brazil: results from the Brazilian National Health Survey 2013 and 2019. Cad Saude Publica, 6 maio a2022.
LOPES, F.; TEIXEIRA, C.; GONÇALO OLIVEIRA, H. Contributions to Clinical Named Entity Recognition in Portuguese. Proceedings of the 18th BioNLP Workshop and Shared Task. Anais...Florence, Italy: Association for Computational Linguistics, ago. 2019. Disponível em: <https://www.aclweb.org/anthology/W19-5024>
LOPES, L. et al. PortiLexicon-UD: a Portuguese Lexical Resource according to Universal Dependencies Model. Proceedings of the Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. b2022. Disponível em: <https://aclanthology.org/2022.lrec-1.715>
LOPES, L. et al. Disambiguation of Universal Dependencies Part-of-Speech Tags of Closed Class Words in Portuguese. (A. Britto, K. V. Delgado, Eds.)Proceedings of the 12th Brazilian Conference on Intelligent Systems (BRACIS). Anais...2023.
LOPES, L.; PARDO, T. Towards Portparser - a highly accurate parsing system for Brazilian Portuguese following the Universal Dependencies framework. (P. Gamallo et al., Eds.)Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. 2024. Disponível em: <https://aclanthology.org/2024.propor-1.41>
LÓPEZ, R. et al. A qualitative analysis of a corpus of opinion summaries based on aspects. Proceedings of the 9th Linguistic Annotation Workshop. Anais...2015.
LOPEZ-GAZPIO, I. et al. Interpretable semantic textual similarity: Finding and explaining differences between sentences. Knowledge-Based Systems, v. 119, p. 186–199, 2017.
LORÈ, F. et al. An AI framework to support decisions on GDPR compliance. Journal of Intelligent Information Systems, p. 1–28, 2023.
LOSADA, D. E.; CRESTANI, F. A Test Collection for Research on Depression and Language Use. Experimental IR Meets Multilinguality, Multimodality, and Interaction. Anais...Cham: Springer, 2016.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. eRISK 2017: CLEF lab on early risk prediction on the internet: experimental foundations. Lecture Notes in Computer Science vol 10456. Anais...Cham: Springer, 2017.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. Overview of eRisk: Early Risk Prediction on the Internet. Lecture Notes in Computer Science vol 11018. Anais...Cham: Springer, 2018.
LOSADA, D. E.; CRESTANI, F.; PARAPAR, J. Overview of eRisk 2019 Early Risk Prediction on the Internet. Lecture Notes in Computer Science vol 11696. Anais...2019.
LOSNEGAARD, G. S. et al. PARSEME Survey on MWE Resources. (N. C. (Conference Chair) et al., Eds.)Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). Anais...Paris, France: European Language Resources Association (ELRA), 2016.
LOUIS, A.; HIGGINS, D. Off-topic essay detection using short prompt texts. Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications. Anais...Los Angeles, California: Association for Computational Linguistics, jun. 2010.
LOUIS, A.; NENKOVA, A. Automatically assessing machine summary content without a gold standard. Computational Linguistics, v. 39, n. 2, p. 267–300, 2013.
LOVEYS, K. et al. Small but Mighty: Affective Micropatterns for Quantifying Mental Health from Social Media Language. Fourth Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Anais...Vancouver, Canada: Association for Computational Linguistics, 2017.
LOVINS, J. B. Development of a stemming algorithm. Mech. Transl. Comput. Linguistics, v. 11, n. 1-2, p. 22–31, 1968.
LUCAS, J. et al. Fighting Fire with Fire: The Dual Role of LLMs in Crafting and Detecting Elusive Disinformation. (H. Bouamor, J. Pino, K. Bali, Eds.)Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Anais...Singapore: Association for Computational Linguistics, dez. 2023. Disponível em: <https://aclanthology.org/2023.emnlp-main.883>
LUCY, L.; BAMMAN, D. Gender and Representation Bias in GPT-3 Generated Stories. Proceedings of the Third Workshop on Narrative Understanding. Anais...Virtual: Association for Computational Linguistics, jun. 2021. Disponível em: <https://aclanthology.org/2021.nuse-1.5>
LUDUSAN, B.; SYNNAEVE, G.; DUPOUX, E. Prosodic boundary information helps unsupervised word segmentation. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...2015.
LUHN, H. P. The automatic creation of literature abstracts. IBM Journal of research and development, v. 2, n. 2, p. 159–165, 1958.
LUO, X. On Coreference Resolution Performance Metrics. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Anais...Vancouver, Canada: 2005.
LUONG, T.; PHAM, H.; MANNING, C. D. Effective Approaches to Attention-based Neural Machine Translation. (L. Màrquez et al., Eds.)Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015. Anais...The Association for Computational Linguistics, 2015. Disponível em: <https://doi.org/10.18653/v1/d15-1166>
LYONS, J. Semantics: Volume 2. [s.l.] Cambridge university press, 1977. v. 2
MA, Q. et al. Blend: a Novel Combined MT Metric Based on Direct Assessment - CASICT-DCU submission to WMT17 Metrics Task. Proceedings of the Second Conference on Machine Translation, WMT 2017, Copenhagen, Denmark, September 7-8, 2017. Anais...2017. Disponível em: <https://doi.org/10.18653/v1/w17-4768>
MACDONALD, C.; TONELLOTTO, N. Declarative Experimentation in Information Retrieval using PyTerrier. Proceedings of ICTIR 2020. Anais...2020.
MACHADO, A. A. A. et al. Personalitatem Lexicon: um léxico em português brasileiro para mineração de traços de personalidade em textos. Proceedings of the Brazilian Symposium on Computers in Education. Anais...2015.
MACHADO, M. T.; PARDO, T. A. S. NILC at ABSAPT 2022: Aspect Extraction for Portuguese. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, September 20, 2022. Anais...2022.
MACHADO, M. T.; PARDO, T. A. S.; RUIZ, E. E. S. Creating a portuguese context sensitive lexicon for sentiment analysis. Proceedings of the 13th international conference on computational processing of the Portuguese Language (PROPOR). Anais...2018.
MACIEL, A. M. B. Para o reconhecimento da especificidade do termo jurídico. mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2001.
MACOHIN, A.; CARNEIRO, J. V. V. Web Crawling e Web Scraping em sites de tribunais: publicidade processual e proteção de dados pessoais nas experiências europeia e brasileira. Em: WACHOWICZ, M. (Ed.). Proteção de Dados Pessoais em Perspectiva: LGPD e RGPD na Ótica do Direito Comparado. Curitiba: Gedai, UFPR, 2020.
MADUREIRA, B. Flamingos and Hedgehogs in the Croquet-Ground: Teaching Evaluation of NLP Systems for Undergraduate Students. Proceedings of the Fifth Workshop on Teaching NLP. Anais...Online: Association for Computational Linguistics, jun. 2021. Disponível em: <https://aclanthology.org/2021.teachingnlp-1.14>
MADUREIRA, B.; ÇELIKKOL, P.; SCHLANGEN, D. Revising with a Backward Glance: Regressions and Skips during Reading as Cognitive Signals for Revision Policies in Incremental Processing. (J. Jiang, D. Reitter, S. Deng, Eds.)Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL). Anais...Singapore: Association for Computational Linguistics, dez. a2023. Disponível em: <https://aclanthology.org/2023.conll-1.22>
MADUREIRA, B.; KAHARDIPRAJA, P.; SCHLANGEN, D. The Road to Quality is Paved with Good Revisions: A Detailed Evaluation Methodology for Revision Policies in Incremental Sequence Labelling. Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue. Anais...Prague, Czechia: Association for Computational Linguistics, set. b2023. Disponível em: <https://aclanthology.org/2023.sigdial-1.14>
MADUREIRA, B.; LASOTA, L. Das Inquietudes em Tecnologias de Linguagem. Em: Novas Tecnologias. [s.l.] Editora Casa do Direito, 2023.
MADUREIRA, B.; SCHLANGEN, D. Incremental Processing in the Age of Non-Incremental Encoders: An Empirical Assessment of Bidirectional Models for Incremental NLU. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.26>
MAGNINI, B. et al. Overview of the CLEF 2006 Multilingual Question Answering Track. Em: PETERS, C. et al. (Eds.). Evaluation of Multilingual and Multi-modal Information Retrieval - 7th Workshop of the Cross-Language Evaluation Forum, CLEF 2006. Alicante, Spain, September, 2006. Revised Selected papers. Lecture Notes em Computer Science. Berlin / Heidelberg: Springer, 2007. v. 4730p. 223–256.
MAHAJAN, K.; SHAIKH, S. On the Need for Thoughtful Data Collection for Multi-Party Dialogue: A Survey of Available Corpora and Collection Methods. Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue. Anais...Singapore; Online: Association for Computational Linguistics, jul. 2021. Disponível em: <https://aclanthology.org/2021.sigdial-1.36>
MAIA, D. F. et al. UlyssesSD-Br: Stance Detection in Brazilian Political Polls. (G. Marreiros et al., Eds.)Progress in Artificial Intelligence. Anais...Cham: Springer International Publishing, 2022. Disponível em: <https://github.com/Dyonnatan/UlyssesSD-Br>
MAIA, M.; LEMLE, M.; FRANÇA, A. I. Efeito stroop e rastreamento ocular no processamento de palavras. Ciências e Cognição 2007, v. 12, p. 02–17, 2007.
MALENCHINI, F. M. et al. Um Benchmark para Sistemas de Extração de Informação Aberta em Português. Proceedings of theSymposium in Information and Human Language Technology (STIL 2019). Anais...Salvador, Bahia: SBC, out. 2019.
MALIK, V. et al. ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Anais...Association for Computational Linguistics, 2021.
MALINGAN, N. Attention Mechanism in Deep Learning., 2024. Disponível em: <https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/>
MALOUF, R. A Comparison of Algorithms for Maximum Entropy Parameter Estimation. COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002). Anais...2002. Disponível em: <https://aclanthology.org/W02-2018>
MANDAL, A. et al. Unsupervised approaches for measuring textual similarity between legal court case reports. Artificial Intelligence and Law, v. 29, n. 3, p. 417–451, 2021.
MANI, I. Automatic Summarization. John Benjamins Publishing Company, v. 2, p. 399–408, 2001.
MANI, I.; MAYBURY, M. T. Advances in automatic text summarization. [s.l.] MIT press, 1999.
MANN, P.; MATSUSHIMA, E. H.; PAES, A. Detecting Depression from Social Media Data as a Multiple-Instance Learning Task. 10th International Conference on Affective Computing and Intelligent Interaction (ACII). Anais...2022.
MANN, P.; PAES, A.; MATSUSHIMA, E. H. See and Read: Detecting Depression Symptoms in Higher Education Students Using Multimodal Social Media Data. Proceedings of the International AAAI Conference on Web and Social Media. Anais...2020.
MANN, W. C.; THOMPSON, S. A. Rhetorical structure theory: Toward a functional theory of text organization. Text-interdisciplinary Journal for the Study of Discourse, v. 8, n. 3, p. 243–281, a1988.
MANN, W.; THOMPSON, S. Rethorical Structure Theory: Toward a functional theory of text organization. Text, v. 8, p. 243–281, jan. b1988.
MANNING, C. D.; SCHÜTZE, H. Foundations of statistical natural language processing. Cambridge, USA: mitpress, 1999.
MANNING, C. D.; SCHÜTZE, H.; RAGHAVAN, P. Introduction to information retrieval. [s.l.] Cambridge University Press Cambridge, 2008.
MARCACINI, R. M.; CANDIDO JUNIOR, A.; CASANOVA, E. Overview of the Automatic Speech Recognition for Spontaneous and Prepared Speech & Speech Emotion Recognition in Portuguese (SE&R) Shared-tasks at PROPOR 2022. Proceedings of the Workshop on Automatic Speech Recognition for Spontaneous and Prepared Speech & Speech Emotion Recognition in Portuguese co-located with 15th edition of the International Conference on the Computational Processing of Portuguese (PROPOR 2022). Anais...2022.
MARCU, D. From local to global coherence: A bottom-up approach to text planning. AAAI/IAAI. Anais...Citeseer, 1997.
MARCU, D.; CARLSON, L.; WATANABE, M. The automatic translation of discourse structures. 1st Meeting of the North American Chapter of the Association for Computational Linguistics. Anais...2000.
MARCUSCHI, L. A. Atos de referenciação na interação face a face. Cadernos de Estudos Linguı́sticos, v. 41, p. 37–54, 2001.
MARCUSCHI, L. A. Produção textual, análise de gêneros e compreensão. [s.l.] Parábola Ed., 2008.
MAREGA, L. M. P.; JUNG, N. M. A sobreposição de falas na conversa cotidiana: disputa pela palavra? Revista Veredas, v. 15, n. 1, 2011.
MARGARIDO, P. R. A. et al. Automatic Summarization for Text Simplification: Evaluating Text Understanding by Poor Readers. Companion Proceedings of the XIV Brazilian Symposium on Multimedia and the Web. Anais...: WebMedia ’08.New York, NY, USA: ACM, 2008. Disponível em: <http://doi.acm.org/10.1145/1809980.1810057>
MARIE, B.; FUJITA, A.; RUBINO, R. Scientific Credibility of Machine Translation Research: A Meta-Evaluation of 769 Papers. arXiv:2106.15195 [cs], jun. 2021.
MARINHO, J. et al. Automated Essay Scoring: An approach based on ENEM competencies. Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional. Anais...SBC, a2022.
MARINHO, J.; ANCHIÊTA, R.; MOURA, R. Essay-BR: a Brazilian Corpus to Automatic Essay Scoring Task. Journal of Information and Data Management, v. 13, n. 1, p. 65–76, b2022.
MARKANTONATOU, S. et al. IDION: A database for Modern Greek multiword expressions. Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019). Anais...Florence, Italy: Association for Computational Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5115>
MARKANTONATOU, S. et al. PMWE conventions for examples containing multiword expressions., 2021. Disponível em: <https://gitlab.com/parseme/pmwe/-/raw/master/Conventions-for-MWE-examples/PMWE_series_conventions_for_multilingual_examples.pdf>
MARKOV, A. A. The theory of algorithms. Trudy Matematicheskogo Instituta Imeni VA Steklova, v. 42, p. 3–375, 1954.
MARNEFFE, M.-C. DE et al. Universal Dependencies. Computational Linguistics, v. 47, n. 2, p. 255–308, jun. 2021.
MARSLEN-WILSON, W. Linguistic structure and speech shadowing at very short latencies. Nature, v. 244, n. 5417, p. 522–523, 1973.
MARTINS, D. B. DE J. Pós-edição automática de textos traduzidos automaticamente de inglês para português do Brasil. Mestrado—São Carlos: Universidade Federal de São Carlos, 2014.
MARTINS, D. B. DE J.; CASELI, H. DE M. Automatic machine translation error identification. Machine Translation, v. 29, n. 1, p. 1–24, 2015.
MARTINS, H. Sobre a estabilidade do significado em Wittgenstein. Veredas, v. 4, n. 2, p. 19–42, 2000.
MARTINS, H. Três Caminhos na Filosofia da Linguagem. Em: Introdução à Linguística. Volume III. [s.l.] Editora Cortez, 2004.
MARTINS, R. T. et al. An interlingua aiming at communication on the Web: How language-independent can it be? NAACL-ANLP 2000 Workshop: Applied Interlinguas: Practical Applications of Interlingual Approaches to NLP. Anais...2000. Disponível em: <https://aclanthology.org/W00-0204>
MARTINS, R.; NUNES, M. DAS G. V.; HASEGAWA, R. Curupira: A Functional Parser for Brazilian Portuguese. (N. J. Mamede et al., Eds.)Computational Processing of the Portuguese Language. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
MARTINS, T. B. F. et al. Readability Formulas Applied to Textbooks in Brazilian Portuguese. [s.l.] ICMSC-USP, 1996.
MARTSCHAT, S.; STRUBE, M. Latent Structures for Coreference Resolution. Transactions of the Association for Computational Linguistics, v. 3, p. 405–418, 2015.
MATOS, V. B. et al. Coordination within Conversational Agents with Multiple Sources. Anais do XX Encontro Nacional de Inteligência Artificial e Computacional. Anais...SBC, 2023. Disponível em: <https://doi.org/10.5753/eniac.2023.234533>
MATTEI, L. D. et al. ATE ABSITA@ EVALITA2020: Overview of the Aspect Term Extraction and Aspect-based Sentiment Analysis Task. Proceedings of the 7th Evaluation Campaign of Natural Language Processing and Speech tools for Italian (EVALITA 2020), 2020.
MATTHEWS, B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, v. 405, n. 2, p. 442–451, 1975.
MATTHIESSEN, M. C. M. I. Applying systemic functional linguistics in healthcare contexts. Text and Talk, v. 33, n. 4-5, p. 437–447, 19 ago. 2013.
MATTHIESSEN, M. C. M. I.; TERUYA, K.; WU, C. Multilingual studies as a multi-dimensional space of interconnected language studies. Em: Meaning in context : strategies for implementing intelligent applications of language studies. [s.l.] Continuum, 2008. p. 146–221.
MATTOS, L. DE et al. Contribuições para o desenvolvimento de Agentes Pedagógicos Conversacionais e sua integração a Ambientes Virtuais de Aprendizagem. Anais do XXXIII Simpósio Brasileiro de Informática na Educação. Anais...SBC, 2022. Disponível em: <https://doi.org/10.5753/sbie.2022.225088 >
MAX, A. Writing for Language-Impaired Readers. In: Gelbukh A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2006. Lecture Notes in Computer Science, vol 3878. Anais...Springer, Berlin, Heidelberg, 2006.
MAXWELL, K. T.; SCHAFER, B. Concept and context in legal information retrieval. Em: Legal Knowledge and Information Systems. [s.l.] IOS Press, 2008. p. 63–72.
MAYER, R. E. Elaboration techniques that increase the meaningfulness of technical text: An experimental test of the learning strategy hypothesis. Journal of Educational Psychology, v. 72, n. 6, p. 770–784, 1980.
MAYFIELD, E.; BLACK, A. W. Should You Fine-Tune BERT for Automated Essay Scoring? Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications. Anais...Association for Computational Linguistics, jul. 2020.
MAZIERO, E. G. et al. A base de dados lexical e a interface web do TeP 2.0: thesaurus eletrônico para o Português do Brasil. Proceedings of the XIV Brazilian Symposium on Multimedia and the Web. Anais...Salvador, Brazil: a2008.
MAZIERO, E. G. Análise retórica com base em grande quantidade de dados. tese de doutorado—[s.l.] Universidade de São Paulo, 2016.
MAZIERO, E. G.; HIRST, G.; PARDO, T. A. S. Adaptation of discourse parsing models for the Portuguese language. 2015 Brazilian Conference on Intelligent Systems (BRACIS). Anais...IEEE, 2015.
MAZIERO, E. G.; JORGE, M. L. DEL R. C.; PARDO, T. A. S. Identifying Multidocument Relations. NLPCS, v. 7, p. 60–69, 2010.
MAZIERO, E. G.; PARDO, T. A. S. Automatic Identification of Multi-document Relations. Proceedings of the PROPOR 2012 PhD and MSc/MA Dissertation Contest, p. 1–8, 2012.
MAZIERO, E. G.; PARDO, T. A. S.; ALUÍSIO, S. M. Ferramenta de Análise Automática de Inteligibilidade de Córpus (AIC). NILC - ICMC-USP, b2008.
MAZUMDER, M. et al. Multilingual spoken words corpus. Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). Anais...2021.
MCCALLUM, A.; LI, W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4. Anais...2003.
MCCANN, B. et al. Learned in Translation: Contextualized Word Vectors. Proceedings of the 31st International Conference on Neural Information Processing Systems. Anais...: NIPS’17.Red Hook, NY, USA: Curran Associates Inc., 2017.
MCCRAE, J. P. et al. English WordNet 2019 An Open-Source WordNet for English. Proceedings of the 10th Global Wordnet Conference. Anais...Wroclaw, Poland: Global Wordnet Association, jul. 2019. Disponível em: <https://aclanthology.org/2019.gwc-1.31>
MCDONALD, R. et al. Universal Dependency Annotation for Multilingual Parsing. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Anais...Sofia, Bulgaria: Association for Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-2017>
MCGUIRE, J. et al. The reputational and ethical consequences of deceptive chatbot use. Scientific Reports, v. 13, n. 1, 2023.
MCNAMARA, D. S. et al. Coh-Metrix Common Core T.E.R.A. version 1.0., 2013. Disponível em: <http://www.commoncoretera.com/>
MCNAMARA, D. S. et al. Automated Evaluation of Text and Discourse with Coh-Metrix. 1a. ed. [s.l.] Cambridge University Press, 2014.
MEI, H.; BANSAL, M.; WALTER, M. R. What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment. Proceedings of NAACL-2016. Anais...: HLT-NAACL’16.San Diego, California: Association for Computational Linguistics, 2016. Disponível em: <http://aclanthology.coli.uni-saarland.de/pdf/N/N16/N16-1086.pdf>
MEL’ČUK, I. General Phraseology: Theory and Practice. Amsterdam/Philadelphia: John Benjamins, 2023. v. 36
MEL’ČUK, I.; CLAS, A.; POLGUÈRE, A. Introduction à la lexicologie explicative et combinatoire. Louvain la Neuve, Belgium: Editions Duculot, 1995.
MEL’ČUK, I.; POLGUÈRE, A. A Formal Lexicon In The Meaning-Text Theory Or (How To Do Lexica With Words). cl, v. 13, n. 3-4, p. 261–275, 1987.
MELLO, H.; RASO, T.; ALMEIDA FERRARI, L. DE. C-ORAL–Brasil II: Corpus de referência do português brasileiro falado informal., no prelono prelo.
MELO, G. DE; WEIKUM, G. Towards a universal wordnet by learning from combined evidence. Proceedings of the 18th ACM conference on Information and knowledge management. Anais...2009.
MENDES, A. R.; CASELI, H. M. Identifying Fine-grained Depression Signs in Social Media Posts. Proceedings of the 2024 joint international conference on computational linguistics, language resources and evaluation (LREC 2024). Anais...2024.
MENDES, R. B.; OUSHIRO, L. Mapping Paulistano Portuguese: the SP2010 Project. Proceedings of the VIIth GSCP International Conference: Speech and Corpora. Anais...Firenze, Italy: Fizenze University Press, 2012.
MEYER, C. F. et al. The world wide web as linguistic corpus. Em: Corpus Analysis. [s.l.] Brill Rodopi, 2003. p. 241–254.
MIIKKULAINEN, R.; DYER, M. G. Natural Language Processing With Modular Pdp Networks and Distributed Lexicon. Cognitive Science, v. 15, n. 3, p. 343–399, 1991.
MIKOLOV, T. et al. Efficient Estimation of Word Representations in Vector Space., a2013. Disponível em: <https://arxiv.org/abs/1301.3781>
MIKOLOV, T. et al. Distributed Representations of Words and Phrases and their Compositionality. (C. J. Burges et al., Eds.)Advances in Neural Information Processing Systems. Anais...Curran Associates, Inc., b2013. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf>
MILLER, G. A. WordNet: A Lexical Database for English. Communications of the ACM, v. Vol. 38, No. 11, p. 39–41, 1995.
MINSKY, M. A framework for representing knowledge. The psychology of computer vision, 1975.
MITCHELL, M. et al. Model cards for model reporting. Proceedings of the conference on fairness, accountability, and transparency. Anais...2019.
MITKOV, R. The Oxford handbook of Computational Linguistics. [s.l.] Oxford University Press, 2003.
MITKOV, R. 21 Discourse Processing. The handbook of computational linguistics and natural language processing, p. 599, 2010.
MIWA, M.; BANSAL, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Association for Computational Linguistics, 2016.
MOHAN, S. et al. The Impact of Toxic Language on the Health of Reddit Communities. Proceedings of the Canadian Conference on AI. Anais...2017.
MOL, L. et al. The communicative import of gestures: Evidence from a comparative analysis of human–human and human–machine interactions. Gesture, v. 9, n. 1, p. 97–126, 2009.
MOLLAS, I. et al. ETHOS: a multi-label hate speech detection dataset. Complex & Intelligent Systems, 2022.
MONTEIRO, R. A. et al. Contributions to the Study of Fake News in Portuguese: New Corpus and Automatic Detection Results. Proceedings of the 13th international conference on computational processing of the Portuguese Language. Anais...Canela, Rio Grande do Sul, Brazil: Springer International Publishing, set. 2018.
MONTI, J. et al. (EDS.). Proceedings of The 3rd Workshop on Multi-word Units in Machine Translation and Translation Technology (MUMTTT 2017). Geneva, Switzerland: Editions Tradulex, 2017.
MONTORO, A. F. Curso de Teoria Geral do Direito - Aula 2: A linguagem do direito: semântica, sintática e pragmática. Disponível em: <http://www.dialdata.com.br/ilam/aula2>.
MOORE, R. K. Spoken language processing: Piecing together the puzzle. Speech Communication, v. 49, n. 5, p. 418–435, 2007.
MOORKENS, J. et al. Correlations of perceived post-editing effort with measurements of actual effort. Machine Translation, v. 29, n. 3/4, p. 267–284, 2015.
MOORKENS, J. Under pressure: translation in times of austerity. Perspectives, v. 25, n. 3, p. 464–477, fev. 2017.
MORAES GARCEZ, P. DE; STEIN, F. Organização da fala-em-interação: o dispositivo para o gerenciamento de fala sobreposta na conversa cotidiana em dados de português brasileiro. Revista de Estudos da Linguagem, v. 23, n. 1, p. 159–194, 2015.
MORENO, J.; BRESSAN, G. FACTCK.BR: a new dataset to study fake news. : WebMedia ’19.New York, NY, USA: Association for Computing Machinery, 2019. Disponível em: <https://doi.org/10.1145/3323503.3361698>
MORENO SCHNEIDER, J. et al. Lynx: A knowledge-based AI service platform for content processing, enrichment and analysis for the legal domain. Information Systems, v. 106, p. 101966, 2022.
MORETTI, F. Distant Reading. [s.l.] Verso, 2013.
MOTA, C. R3M, uma participação minimalista no Segundo HAREM. quot; In Cristina Mota; Diana Santos (ed) Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM Linguateca 2008, 2008.
MOTA, C. et al. É tempo de avaliar o tempo. Em: MOTA, C.; SANTOS, D. (Eds.). Desafios na avaliação conjunta do reconhecimento de entidades mencionadas. [s.l.] Linguateca, 2008. p. 55–75.
MOTA, C. et al. Págico: Evaluating Wikipedia-based information retrieval in Portuguese. (N. Calzolari et al., Eds.)Proceedings of the Eigth International Conference on Language Resources and Evaluation (LREC’12). Anais...Istambul: 2012. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2012/pdf/590_Paper.pdf>
MOTA, C. C. et al. Reconhecimento de entidades nomeadas em documentos jurı́dicos em português utilizando redes neurais. Encontro Nacional de Inteligência Artificial e Computacional (ENIAC). Anais...SBC, 2021.
MOTA, C.; SANTOS, D. (EDS.). Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM. [s.l.] Linguateca, 2008.
MOTA, C.; SANTOS, D.; RANCHHOD, E. Avaliação de reconhecimento de entidades mencionadas: princı́pio de HAREM. Avaliação conjunta: um novo paradigma no processamento computacional da lı́ngua portuguesa, p. 161–175, 2007.
MOTTA, E. Sentenças Judiciais e Acessibilidade Textual e Terminológica. Domínios de Lingu@gem, v. 15, n. 3, p. 761–813, 2021.
MOTTA, E. SENTENÇAS JUDICIAIS E LINGUAGEM SIMPLES: um encontro possível e necessário. mathesis—[s.l.] Universidade Federal do Rio Grande do Sul, RS, 2022.
MULLER, P. et al. Manuel d’annotation en relations de discours du projet annodis., 2012.
MUNIZ, M. C. M. A construção de recursos linguístico-computacionais para o português do Brasil: o projeto Unitex-PB. mathesis—[s.l.] Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo - ICMC/USP, 2004.
MURTARELLI, G.; GREGORY, A.; ROMENTI, S. A conversation-based perspective for shaping ethical human–machine interactions: The particular challenge of chatbots. Journal of Business Research, v. 129, p. 927–935, 2021.
MUSGRAVE, K.; BELONGIE, S.; LIM, S.-N. A metric learning reality check. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16. Anais...Springer, 2020. Disponível em: <https://doi.org/10.1007/978-3-030-58595-2_41>
NADEAU, D. Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. tese de doutorado—[s.l.] University of Ottawa, 2007.
NAGAO, M. A Framework of a Mechanical Translation between Japanese and English by Analogy Principle. Em: NIRENBURG, S.; SOMERS, H. L.; WILKS, Y. A. (Eds.). Readings in Machine Translation. [s.l.] The MIT Press, 1984.
NAIR, S. S.; JEEVEN, V. A brief overview of metadata formats. DESIDOC Journal of Library & Information Technology, v. 24, n. 4, 2004.
NAMIUTI, C. O Corpus Anotado do Português Histórico: um avanço para as pesquisas em Linguística Histórica do Português. Revista Virtual de Estudos da Linguagem, v. 2, p. 1–9, ago. 2004.
NARDE, W. Análise de notícias falsas em rede social: uma abordagem utilizando transferência de aprendizagem e Transformers. https://www.monografias.ufop.br/bitstream/35400000/3122/6/MONOGRAFIA_AnáliseNotíciasFalsas.pdf, 2021.
NASAR, Z.; JAFFRY, S. W.; MALIK, M. K. Named entity recognition and relation extraction: State-of-the-art. ACM Computing Surveys (CSUR), v. 54, n. 1, p. 1–39, 2021.
NASCIMENTO, D. N. C. R. DO. Sumarização de artigos científicos em português no domínio da saúde. mathesis—[s.l.] (Mestrado em Informática) - Programa de Pós-Graduação em Informática da PUC-Rio, Rio de Janeiro, 2023.
NASCIMENTO, G. et al. Hate speech detection using brazilian imageboards. Proceedings of the 25th Brazillian Symposium on Multimedia and the Web. Anais...2019.
NASCIMENTO, M. F. B. DO; GONÇALVES, J. B. Corpus de Referência do Português Contemporâneo (CRPC) - desenvolvimento e aplicações. Actas do XI Encontro Nacional da Associação Portuguesa de Lingüı́stica, v. 1, p. 143–150, 1996.
NASCIMENTO, R. DA S. et al. Identificando Sinais de Comportamento Depressivo em Redes Sociais. Anais do VII Brazilian Workshop on Social Network Analysis and Mining. Anais...Porto Alegre, Brazil: SBC, 2018.
NATH, N.; LEE, S.-H.; LEE, I. NEAR: Named Entity and Attribute Recognition of Clinical Concepts. J. of Biomedical Informatics, v. 130, n. C, jun. 2022.
NAVIGLI, R.; PONZETTO, S. P. BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial intelligence, v. 193, p. 217–250, 2012.
NECO, R. P.; FORCADA, M. L. Asynchronous translations with recurrent neural nets. Proceedings of International Conference on Neural Networks (ICNN’97). Anais...1997.
NENKOVA, A.; PASSONNEAU, R. J. Evaluating content selection in summarization: The pyramid method. Proceedings of the human language technology conference of the north american chapter of the association for computational linguistics: Hlt-naacl 2004. Anais...2004.
NETO, J. P. et al. Design of a multimodal input interface for a dialogue system. Computational Processing of the Portuguese Language: 7th International Workshop, PROPOR 2006, Itatiaia, Brazil, May 13-17, 2006. Proceedings 7. Anais...Springer, 2006. Disponível em: <https://doi.org/10.1007/11751984_18>
NETO, J. R. C. S. A. V. S.; FALEIROS, T. DE P. Deep Active-Self Learning Applied to Named Entity Recognition. (A. Britto, K. Valdivia Delgado, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2021. Disponível em: <https://avio11.github.io/resources/aposentadoria/aposentadoria.html>
NEURALMIND. NeuralMind disponibiliza modelo BERT do Google em português. Neuralmind blog. Disponível em: <https://neuralmind.ai/2020/01/26/neuralmind-disponibiliza-modelo-bert-inteligencia-artificial-do-google-em-portugues/>.
NEVES, M. H. DE M. Texto e gramática. [s.l.] Contexto, 2013.
NEWELL, A. A tutorial on speech understanding systems. Speech recognition, p. 4–54, 1975.
NEWELL, E. et al. Assessing the Verifiability of Attributions in News Text. (G. Kondrak, T. Watanabe, Eds.)Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Anais...Taipei, Taiwan: Asian Federation of Natural Language Processing, nov. 2017. Disponível em: <https://aclanthology.org/I17-1076>
NEWMAN, N. et al. Reuters institute digital news report 2020. [s.l.] Report of the Reuters Institute for the Study of Journalism, 2020.
NG, V.; CARDIE, C. Improving machine learning approaches to coreference resolution. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Anais...Association for Computational Linguistics, 2002.
NGUYEN, D. B.; THEOBALD, M.; WEIKUM, G. J-NERD: joint named entity recognition and disambiguation with rich linguistic features. Transactions of the Association for Computational Linguistics, v. 4, p. 215–229, 2016.
NIJKAMP, E. et al. ProGen2: Exploring the Boundaries of Protein Language Models. CoRR, v. abs/2206.13517, 2022.
NIVRE, J. et al. The CoNLL 2007 Shared Task on Dependency Parsing. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Anais...Prague, Czech Republic: Association for Computational Linguistics, jun. 2007. Disponível em: <https://aclanthology.org/D07-1096>
NIVRE, J.; FANG, C.-T. Universal Dependency Evaluation. (M.-C. de Marneffe, J. Nivre, S. Schuster, Eds.)Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017). Anais...Gothenburg, Sweden: Association for Computational Linguistics, 2017. Disponível em: <https://aclanthology.org/W17-0411>
NIVRE, J.; NILSSON, J. Multiword units in syntactic parsing. Proceedings of Methodologies and Evaluation of Multiword Units in Real-World Applications (MEMURA), 2004.
NOGUEIRA, R. et al. Document expansion by query prediction. arXiv preprint arXiv:1904.08375, 2019.
NOORALAHZADEH, F.; ØVRELID, L. Syntactic Dependency Representations in Neural Relation Classification. Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP. Anais...Melbourne, Australia: Association for Computational Linguistics, jul. 2018. Disponível em: <https://aclanthology.org/W18-2907>
NOVIKOVA, J. et al. Why We Need New Evaluation Metrics for NLG. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Anais...: EMNLP’17.Copenhagen, Denmark: Association for Computational Linguistics, 2017. Disponível em: <http://aclweb.org/anthology/D17-1237>
NOZAKI, J. et al. End-to-end Speech-to-Punctuated-Text Recognition. Proc. Interspeech 2022. Anais...2022.
NUNES, A. S. A coconstrução do conhecimento através de jogos de linguagem em uma aula de língua portuguesa: um estudo das estratégias de leitura a partir da análise dos enquadres interacionais. mathesis—[s.l.] Programa de Pós-Graduação em Letras, Mestrado Profissional (PROFLETRAS); Universidade do Estado do Rio de Janeiro, 2016.
NUNES, E. G. Os marcadores conversacionais na constituição do texto falado. Verbum. Cadernos de Pós-Graduação. ISSN 2316-3267, v. 6, n. 2, p. 120–125, 2017.
NUNES, M. DAS G. V. et al. O uso de interlíngua para comunicação via Internet: a decodificação UNL-português. Revista Tecnologia da Informação, v. 3, n. 1, p. 49–55, 2003.
NUNES, P. LEVANTAMENTO REVELA QUE 90,5% DOS PRESOS POR MONITORAMENTO FACIAL NO BRASIL SÃO NEGROS. Disponível em: < https://www.intercept.com.br/2019/11/21/presos-monitoramento-facial-brasil-negros/>. Acesso em: 28 ago. 2023.
NUNES, R. O. et al. Out of Sesame Street: A Study of Portuguese Legal Named Entity Recognition Through In-Context Learning. INSTICC; SciTePress, a2024.
NUNES, R. O. et al. A Named Entity Recognition Approach for Portuguese Legislative Texts Using Self-Learning. (P. Gamallo et al., Eds.)Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1. Anais...Santiago de Compostela, Galicia/Spain: Association for Computational Lingustics, mar. b2024. Disponível em: <https://aclanthology.org/2024.propor-1.30>
O’BRIEN, S. Towards predicting post-editing productivity. Machine translation, v. 25, p. 197–215, 2011.
O’BRIEN, S. et al. Dynamic Quality Evaluation Framework. [s.l.] TAUS Labs Report. The Translation Automation User Society-TAUS, 2011.
O’NEIL, C. Algoritmos de Destruição em Massa. [s.l.] Editora Rua do Sabão, 2021.
OCH, F. J.; NEY, H. The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics, v. 30, n. 4, p. 417–449, dez. 2004.
OECD. The OECD Framework for the Classification of AI systems. Disponível em: < https://wp.oecd.ai/app/uploads/2022/02/Classification-2-pager-1.pdf>. Acesso em: 28 ago. 2023.
OECD. OECD Employment Outlook 2023. [s.l: s.n.]. p. 267
OKANO, E. Y. et al. Fake News Detection on Fake.Br Using Hierarchical Attention Networks. (P. Quaresma et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2020.
OKANO, E. Y.; RUIZ, E. E. S. Using linguistic cues to detect fake news on the brazilian portuguese parallel corpus Fake.br. Proceedings of the Symposium in Information and Human Language Technology. Anais...Brazilian Computer Society, 2019.
OKSANEN, A. et al. Semantic Finlex: Transforming, Publishing, and Using Finnish Legislation and Case Law As Linked Open Data on the Web. Em: PERUGINELLI, G.; FARO, S. (Eds.). Knowledge of the Law in the Big Data Age. Frontiers em Artificial Intelligence e Applications. [s.l.] IOS Press, 2019a. v. 317p. 212–228.
OKSANEN, A. et al. ANOPPI: A Pseudonymization Service for Finnish Court Documents. JURIX. Anais...b2019.
OKSANEN, A. et al. An Anonymization Tool for Open Data Publication of Legal Documents. Joint Proceedings of ISWC2022 Workshops. Anais...CEUR-WS. org, 2022. Disponível em: <https://ceur-ws.org/Vol-3257/>
OLIVAL, F.; CAMERON, H.; VIEIRA, R. As Memórias Paroquiais: do manuscrito ao digital. Actas da Jornada de Humanidades Digitais do CIDEHUS (to appear). Anais...2022.
OLIVEIRA, F. S. et al. CML-TTS: A Multilingual Dataset for Speech Synthesis in Low-Resource Languages. International Conference on Text, Speech, and Dialogue. Anais...Springer, 2023.
OLIVEIRA, I. L. Uma mentira repetida mil vezes se transforma em verdade? Reflexões sobre as dinâmicas discursivas e seus efeitos na saúde. Em: Desinformação o mal do século: Distorções, inverdades, fake news: a democracia ameaçada. [s.l: s.n.]. p. 299–315.
OLIVEIRA, L. E. S. et al. SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks. Journal of Biomedical Semantics, v. 13, n. 1, a2022.
OLIVEIRA, L. E. S. E. et al. Experiments on Portuguese Clinical Question Answering. (A. Britto, K. Valdivia Delgado, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2021.
OLIVEIRA, L. F. A. DE et al. Challenges In Annotating A Treebank Of Clinical Narratives In Brazilian Portuguese. Computational Processing of the Portuguese Language: 15th International Conference, PROPOR 2022, Fortaleza, Brazil, March 21–23, 2022, Proceedings. Anais...Berlin, Heidelberg: Springer-Verlag, b2022. Disponível em: <https://doi.org/10.1007/978-3-030-98305-5_9>
OLIVEIRA, L. M. DE; DIAS, J. G. O autorreparo como estratégia adaptativa na fala em interação de um afásico. Linguagem em (Dis) curso, v. 18, p. 49–68, 2018.
OLIVEIRA, L.; CLARO, D.; SOUZA, M. DptOIE: a Portuguese open information extraction based on dependency analysis. Artificial Intelligence Review, v. 56, p. 1–32, dez. c2022.
OLIVEIRA, M. R. DE et al. Repetição em diálogos: análise funcional da conversação. Série Ensaios, v. 9, 1998.
OLIVEIRA, M. R. DE. Manual de Linguística. Em: MARTELOTTA, M. E. (Ed.). São Paulo: Contexto, 2008. p. 193–204.
OLIVEIRA, N. et al. Processamento de Linguagem Natural para Identificação de Notícias Falsas em Redes Sociais: Ferramentas, Tendências e Desafios. Em: [s.l.] SBC, 2020.
OLIVEIRA, R. L. DE; MARTINS, J. T.; PARABONI, I. Mental health prediction from social media connections. New Review of Hypermedia and Multimedia, a2024.
OLIVEIRA, R. L. DE; PARABONI, I. A Bag-of-Users approach to mental health prediction from social media data. 16th International Conference on Computational Processing of Portuguese (PROPOR 2024). Anais...Santiago de Compostela, Spain: 2024.
OLIVEIRA, V. et al. Combining prompt-based language models and weak supervision for labeling named entity recognition on legal documents. Artificial Intelligence and Law, p. 1–21, fev. b2024.
OLIVIERA JR., M. NURC Digital: um protocolo para a digitalização, anotação, arquivamento e disseminação do material do Projeto da Norma Urbana Linguística Culta (NURC). CHIMERA: Revista de Corpus de Lenguas Romances y Estudios Lingüísticos, v. 3, n. 2, p. 149–174, set. 2016.
ONAGA, T.; FUJITA, M.; YOSHINOBU, K. Japanese Legal Bar Problem Solver Focusing on Person Names. Proceedings of the Tenth International Competition on Legal Information Extraction/Entailment (COLIEE 2023). Anais...2023. Disponível em: <https://sites.ualberta.ca/~rabelo/COLIEE2023>
OPENAI. ChatGPT: OpenA’s conversational AI model. Disponível em: <https://openai.com/blog/chatgpt/>. Acesso em: 7 abr. 2023.
ORENGO, V. M.; BURIOL, L. S.; COELHO, A. R. A study on the use of stemming for monolingual ad-hoc Portuguese information retrieval. Workshop of the Cross-Language Evaluation Forum for European Languages. Anais...Springer, 2006.
ORENGO, V. M.; HUYCK, C. A Stemming Algorithmm for the Portuguese Language. Proceedings Eighth Symposium on String Processing and Information Retrieval. Anais...IEEE Computer Society, 2001.
OSBORNE, D. M. The realization of speech acts of refusals of an invitation among Brazilian friends. Revista de estudos da linguagem, v. 18, n. 2, p. 61–85, 2010.
OSBORNE, T.; GERDES, K. The status of function words in dependency grammar: A critique of Universal Dependencies (UD). Glossa: a journal of general linguistics (2016-2021), jan. 2019.
OSGOOD, C. E.; SUCI, G. J.; TENENBAUM, P. H. The Measurement of meaning. Urbana: University of Illinois Press, 1957.
OSTENDORF, M.; PRICE, P.; SHATTUCK-HUFNAGEL, S. The Boston University Radio news corpus., 1995. Disponível em: <https://doi.org/10.35111/Z7XK-Z229>
OSTENDORFF, M. et al. Evaluating document representations for content-based legal literature recommendations. Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law. Anais...2021. Disponível em: <https://doi.org/10.1145/3462757.3466073>
OSTERMANN, A. C.; ANDRADE, D. N. P.; FREZZA, M. A prosódia como componente de formação e de atribuição de sentido a ações na fala-em-interação: o caso de formulações no tribunal. DELTA: Documentação de Estudos em Lingüı́stica Teórica e Aplicada, v. 32, p. 481–513, 2016.
OTT, M. et al. Finding Deceptive Opinion Spam by Any Stretch of the Imagination. (D. Lin, Y. Matsumoto, R. Mihalcea, Eds.)Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Anais...Portland, Oregon, USA: Association for Computational Linguistics, jun. 2011. Disponível em: <https://aclanthology.org/P11-1032>
OUSHIRO, L. Wh-interrogatives in Brazilian Portuguese: the influence of common ground. University of Pennsylvania Working Papers in Linguistics, v. 17, n. 2, p. 17, 2011.
OUSHIRO, L.; MENDES, R. B. A Variação em interrogativas de constituinte no fluxo conversacional. Signum: Estudos da Linguagem, v. 15, n. 3, p. 273–292, 2012.
OUYANG, L. et al. Training language models to follow instructions with human feedback. (A. H. Oh et al., Eds.)Advances in Neural Information Processing Systems. Anais...2022. Disponível em: <https://openreview.net/forum?id=TG8KACxEON>
OVCHINNIKOVA, E. Integration of World Knowledge for Natural Language Understanding. [s.l.] Atlantis Press, 2012.
OVERWIJK, A.; XIONG, C.; CALLAN, J. ClueWeb22: 10 Billion Web Documents with Rich Information. (E. Amigó et al., Eds.)SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022. Anais...ACM, 2022. Disponível em: <https://doi.org/10.1145/3477495.3536321>
ÖZSEVEN, T. Investigation of the effect of spectrogram images and different texture analysis methods on speech emotion recognition. Applied Acoustics, v. 142, p. 70–77, 2018.
PAETZOLD, G. H.; SPECIA, L. Unsupervised Lexical Simplification for Non-native Speakers. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Anais...: AAAI’16.Phoenix, Arizona: AAAI Press, a2016. Disponível em: <http://dl.acm.org/citation.cfm?id=3016387.3016433>
PAETZOLD, G.; SPECIA, L. Inferring Psycholinguistic Properties of Words. NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016. Anais...b2016. Disponível em: <http://aclweb.org/anthology/N/N16/N16-1050.pdf>
PAETZOLD, G.; SPECIA, L. Understanding the Lexical Simplification Needs of Non-Native Speakers of English. (Y. Matsumoto, R. Prasad, Eds.)Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Anais...Osaka, Japan: The COLING 2016 Organizing Committee, dez. c2016. Disponível em: <https://aclanthology.org/C16-1069>
PAETZOLD, G.; SPECIA, L. Lexical Simplification with Neural Ranking. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Anais...Valencia, Spain: Association for Computational Linguistics, abr. 2017. Disponível em: <http://www.aclweb.org/anthology/E17-2006>
PAGE, E. B.; PETERSEN, N. S. The Computer Moves into Essay Grading: Updating the Ancient Test. Phi Delta Kappan, v. 76, p. 561–565, mar. 1995.
PAIOLA, P. H. Sumarização abstrativa de textos em português utilizando aprendizado de máquina. mathesis—[s.l.] (Mestrado em Ciências da Computação) - Programa de Pós-Graduação em Ciência da Computação, Universidade Estadual Paulista J̈úlio de Mesquita Filhö, 2022.
PAIS, V. et al. Named Entity Recognition in the Romanian Legal Domain. Proceedings of the Natural Legal Language Processing Workshop 2021. Anais...Punta Cana, Dominican Republic: Association for Computational Linguistics, nov. 2021.
PAIS, V. et al. LegalNERo: A linked corpus for named entity recognition in the Romanian legal domain. Semantic Web journal, 2024.
PĂIŞ, V.; TUFIŞ, D. Capitalization and punctuation restoration: a survey. Artificial Intelligence Review, v. 55, p. 1681--1722, 2022.
PALMER, M.; FININ, T.; WALTER, S. M. Workshop on the Evaluation of Natural Language Processing Systems. [s.l.] Air Force Systems Command; Rome Air Development Center, 1988. Disponível em: <https://ebiquity.umbc.edu/paper/html/id/1074>.
PALMER, M.; GILDEA, D.; KINGSBURY, P. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31: 1. Anais...The MIT PressJournals, 2005.
PAPA, J. P.; FALCÃO, A. X.; SUZUKI, C. T. N. Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology, v. 19, n. 2, p. 120–131, 2009.
PAPINENI, K. et al. BLEU: A Method for Automatic Evaluation of Machine Translation. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Anais...: ACL ’02.USA: Association for Computational Linguistics, 2002. Disponível em: <https://doi.org/10.3115/1073083.1073135>
PARABONI, I.; GALINDO, M.; IACOVELLI, D. Stars2: a corpus of object descriptions in a visual domain. Language Resources and Evaluation, v. 51, n. 2, p. 439–462, 2017.
PARAGUASSU, L. et al. MedSimples: An Automated Simplification Tool for Promoting Health Literacy in Brazil. DHandNLP@PROPOR. Anais...2020. Disponível em: <https://api.semanticscholar.org/CorpusID:218910691>
PARDO, T. et al. Porttinari - a Large Multi-genre Treebank for Brazilian Portuguese. Anais do XIII Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/17778>
PARDO, T. A. S. Gistsumm: Um sumarizador automático baseado na ideia principal de textos. [s.l.] Série de Relatórios do Núcleo Interinstitucional de Linguística Computacional, Universidade de São Paulo, 2002.
PARDO, T. A. S. Métodos para análise discursiva automática. tese de doutorado—[s.l.] Universidade de São Paulo, 2005.
PARDO, T. A. S.; RINO, L. H. M. TeMário: Um corpus para sumarização automática de textos. [s.l.] Série de Relatórios Técnicos da Universidade de São Carlos, 2003.
PARIDA, S.; MOTLICEK, P. Abstract text summarization: A low resource challenge. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...2019.
PARK, D. S. et al. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. Interspeech 2019. Anais...ISCA, set. 2019. Disponível em: <https://doi.org/10.21437%2Finterspeech.2019-2680>
PARK, S. et al. Activities on Facebook Reveal the Depressive State of Users. J Med Internet Res, v. 15, n. 10, p. e217, 2013.
PARMAR, M. et al. Don’t Blame the Annotator: Bias Already Starts in the Annotation Instructions. Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Anais...Dubrovnik, Croatia: Association for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.eacl-main.130>
PAROUBEK, P.; CHAUDIRON, S.; HIRSCHMAN, L. Principles of Evaluation in Natural Language Processing. Traitement Automatique des Langues, Volume 48, Numéro 1 : Principes de l’évaluation en Traitement Automatique des Langues [Principles of Evaluation in Natural Language Processing]. Anais...France: ATALA (Association pour le Traitement Automatique des Langues), a2007. Disponível em: <https://aclanthology.org/2007.tal-1.1>
PAROUBEK, P.; CHAUDIRON, S.; HIRSCHMAN, L. Principles of Evaluation in Natural Language Processing. Revue TAL, v. 48, n. 1, p. 7–31, b2007.
PARRA ESCARTÍN, C. et al. Ethical Considerations in NLP Shared Tasks. Proceedings of the First ACL Workshop on Ethics in Natural Language Processing. Anais...Valencia, Spain: Association for Computational Linguistics, abr. 2017. Disponível em: <https://aclanthology.org/W17-1608>
PARRA ESCARTÍN, C.; NEVADO LLOPIS, A.; SÁNCHEZ MARTÍNEZ, E. Spanish multiword expressions: Looking for a taxonomy. Em: Multiword expressions: Insights from a multi-lingual perspective. [s.l.] Language Science Press, 2018. p. 271–323.
PASCHOAL, A. F. et al. Pirá: A bilingual Portuguese-English dataset for question-answering about the ocean. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Anais...2021. Disponível em: <https://doi.org/10.1145/3459637.3482012>
PASCHOAL, L. N. et al. Towards a Conversational Agent to Support the Software Testing Education. Proceedings of the XXXIII Brazilian Symposium on Software Engineering. Anais...: SBES ’19.New York, NY, USA: Association for Computing Machinery, 2019. Disponível em: <https://doi.org/10.1145/3350768.3352456>
PASQUALINI, B. Corpop : um corpus de referência do português popular escrito do Brasil. UFRGS - Porto Alegre - RS: Instituto de Letras - UFRGS, 2018.
PASQUALOTTI, P. R. WordNet Affect BR – uma base de expressões de emoção em Português. [s.l.] Novas Edições Acadêmicas, 2015.
PASQUER, C. et al. Verbal Multiword Expression Identification: Do We Need a Sledgehammer to Crack a Nut? Proceedings of the 28th International Conference on Computational Linguistics. Anais...Barcelona, Spain (Online): International Committee on Computational Linguistics, dez. 2020.
PAULLADA, A. et al. Data and its (dis) contents: A survey of dataset development and use in machine learning research. Patterns, v. 2, n. 11, 2021.
PELLE, R. P. DE; MOREIRA, V. Offensive Comments in the Brazilian Web: a dataset and baseline results. Anais do VI Brazilian Workshop on Social Network Analysis and Mining. Anais...2017.
PENNEBAKER, J. W. et al. The development and psychometric properties of LIWC2015. The University of Texas at Austin, 2015.
PENNEBAKER, J. W.; FRANCIS, M. E.; BOOTH, R. J. Linguistic Inquiry and Word Count. [s.l.] Lawerence Erlbaum Associates, 2001.
PENNINGTON, J.; SOCHER, R.; MANNING, C. GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...Doha, Qatar: Association for Computational Linguistics, out. 2014. Disponível em: <https://aclanthology.org/D14-1162>
PEREIRA, A. et al. Systematic review of question answering over knowledge bases. IET Software, v. 16, n. 1, p. 1–13, 2022.
PEREIRA, D. A. A Survey of Sentiment Analysis in the Portuguese Language. Artificial Intelligence Review, 2021.
PEREIRA, V.; PINHEIRO, V. Report - um sistema de extração de informações aberta para língua portuguesa. Anais do X Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...SBC, 2015.
PEREZ-BELTRACHINI, L. et al. Content selection as semantic-based ontology exploration. (C. Gardent, A. Gangemi, Eds.)Proceedings of the 2nd International Workshop on Natural Language Generation and the Semantic Web (WebNLG 2016). Anais...Edinburgh, Scotland: Association for Computational Linguistics, set. 2016. Disponível em: <https://aclanthology.org/W16-3508>
PÉREZ-ROSAS, V.; MIHALCEA, R. Cross-cultural Deception Detection. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Anais...Baltimore, MD, USA: Association for Computational Linguistics, 2014.
PERRAULT, C. R.; ALLEN, J. F. Speech Acts as a Basis for Understanding Dialogue Coherence. Theoretical Issues in Natural Language Processing-2. Anais...1978. Disponível em: <https://aclanthology.org/T78-1017>
PERRIGO, B. Disponível em: <https://time.com/6247678/openai-chatgpt-kenya-workers/>. Acesso em: 9 abr. 2023.
PERSING, I.; NG, V. Modeling Prompt Adherence in Student Essays. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Anais...Baltimore, Maryland: Association for Computational Linguistics, jun. 2014.
PETERS, M. E. et al. Semi-supervised sequence tagging with bidirectional language models. Proc. of ACL-2017. Anais...Vancouver, Canada: Association for Computational Linguistics, 2017.
PETERS, M. E. et al. Deep Contextualized Word Representations. (M. A. Walker, H. Ji, A. Stent, Eds.)Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers). Anais...Association for Computational Linguistics, 2018. Disponível em: <https://doi.org/10.18653/v1/n18-1202>
PETRI, M. J. C. Manual de Linguagem Jurídica. 3rd. ed. São Paulo: Saraiva, 2017.
PIĘKOS, P.; MALINOWSKI, M.; MICHALEWSKI, H. Measuring and Improving BERTs Mathematical Abilities by Predicting the Order of Reasoning. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Anais...Online: Association for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-short.49>
PILÁN, I. et al. The text anonymization benchmark (tab): A dedicated corpus and evaluation framework for text anonymization. Computational Linguistics, v. 48, n. 4, p. 1053–1101, 2022.
PIMENTEL, C. L. A elaboração de um corpus oral: a etapa de transcrição da interação na sala de aula de português como lı́ngua adicional. mathesis—[s.l.] Pontifı́cia Universidade Católica do Rio Grande do Sul, 2016.
PING, W. et al. Deep voice 3: 2000-speaker neural text-to-speech. arXiv preprint arXiv:1710.07654, 2017.
PINHEIRO, V. et al. InferenceNet.Br: Expression of Inferentialist Semantic Content of the Portuguese Language. (T. A. S. Pardo et al., Eds.)Computational Processing of the Portuguese Language. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
PIRES, I.; CASELI, H.; NERIS, V. Design de um chatbot para o diálogo com universitários com possível perfil depressivo. Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde. Anais...Porto Alegre, RS, Brasil: SBC, a2023. Disponível em: <https://sol.sbc.org.br/index.php/sbcas_estendido/article/view/25323>
PIRES, R. et al. Sabiá: Portuguese Large Language Models. (M. C. Naldi, R. A. C. Bianchi, Eds.)Intelligent Systems. Anais...Cham: Springer Nature Switzerland, b2023.
PIRINA, I.; ÇÖLTEKIN, ÇAĞRI. Identifying Depression on Reddit: The Effect of Training Data. Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task. Anais...2018.
PITLER, E.; LOUIS, A.; NENKOVA, A. Automatic evaluation of linguistic quality in multi-document summarization. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Anais...2010.
PLACANI, A. Anthropomorphism in AI: hype and fallacy. AI and Ethics, p. 1–8, 2024.
POESIO, M.; STUCKARDT, R.; VERSLEY, Y. Anaphora Resolution: Algorithms, Resources, and Applications. 1. ed. [s.l.] Springer, 2016.
POLO, F. M. et al. LegalNLP – Natural Language Processing methods for the Brazilian Legal Language., 2021. Disponível em: <https://arxiv.org/abs/2110.15709>
PONTES, L. B. L.; OLIVEIRA, H. T. A. DE; ASSIS BOLDT, F. DE. Avaliação de Modelos Neurais para Sumarização de Código-fonte. Anais do XLIX Seminário Integrado de Software e Hardware. Anais...SBC, 2022.
PONTIKI, M. et al. SemEval-2014 Task 4: Aspect Based Sentiment Analysis. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Anais...Association for Computational Linguistics, 2014. Disponível em: <https://aclanthology.org/S14-2004/>
PONTIKI, M. et al. SemEval-2015 Task 12: Aspect Based Sentiment Analysis. Proceedings of the 9th International Workshop on Semantic Evaluation. Anais...2015.
PONTIKI, M. et al. SemEval-2016 Task 5: Aspect Based Sentiment Analysis. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). Anais...2016.
POPIEL, S. J.; MCRAE, K. The figurative and literal senses of idioms, or all idioms are not used equally. Journal of Psycholinguistic Research, v. 17, n. 6, p. 475–487, 1 nov. 1988.
POPOVIC, M.; BURCHARDT, A. From Human to Automatic Error Classification for Machine Translation Output. Proceedings of the 15th Conference of the European Association for Machine Translation. Anais...Leuven, Belgium: 2011. Disponível em: <https://aclanthology.org/2011.eamt-1.36.pdf>
POPOVIĆ, M. chrF: character n-gram F-score for automatic MT evaluation. Proceedings of the Tenth Workshop on Statistical Machine Translation. Anais...Lisbon, Portugal: Association for Computational Linguistics, set. 2015. Disponível em: <https://aclanthology.org/W15-3049>
POPOVIĆ, M. chrF++: words helping character n-grams. Proceedings of the second conference on machine translation. Anais...2017.
PORTER, M. F. An algorithm for suffix stripping. Program, v. 14, n. 3, p. 130–137, 1980.
PORTET, F. et al. Automatic generation of textual summaries from neonatal intensive care data. Artificial Intelligence, v. 173, n. 7–8, p. 789–816, 2009.
POSNER, J.; RUSSELL, J. A.; PETERSON, B. S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and psychopathology, v. 17, n. 3, p. 715–734, 2005.
PRABHAKARAN, V.; RAMBOW, O. Written Dialog and Social Power: Manifestations of Different Types of Power in Dialog Behavior. Proceedings of the Sixth International Joint Conference on Natural Language Processing. Anais...Nagoya, Japan: Asian Federation of Natural Language Processing, out. 2013. Disponível em: <https://aclanthology.org/I13-1025>
PRADEEP, R. et al. H2oloo at trec 2020: When all you got is a hammer... deep learning, health misinformation, and precision medicine. Corpus, v. 5, n. d3, p. d2, 2020.
PRADHAN, S. et al. CoNLL-2011 shared task: Modeling unrestricted coreference in ontonotes. Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. Anais...Portland, Oregon: Association for Computational Linguistics, 2011.
PRADHAN, S. et al. CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Conference on Natural Language Learning - Shared Task. Anais...Jeju Island, Korea: 2012.
PRADHAN, S. et al. Scoring Coreference Partitions of Predicted Mentions: A Reference Implementation. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Anais...Baltimore, MD, USA: 2014. Disponível em: <http://aclweb.org/anthology/P/P14/P14-2006.pdf>
PRATAP, V. et al. Massively Multilingual ASR: 50 Languages, 1 Model, 1 Billion Parameters., a2020. Disponível em: <https://arxiv.org/abs/2007.03001>
PRATAP, V. et al. MLS: A Large-Scale Multilingual Dataset for Speech Research. Proc. Interspeech 2020, p. 2757–2761, b2020.
PROVILKOV, I.; EMELIANENKO, D.; VOITA, E. BPE-Dropout: Simple and Effective Subword Regularization. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Online: Association for Computational Linguistics, jul. 2020.
PRZEPIÓRKOWSKI, A. et al. Extended phraseological information in a valence dictionary for NLP applications. Proceedings of Workshop on Lexical and Grammatical Resources for Language Processing. Anais...Dublin, Ireland: Association for Computational Linguistics; Dublin City University, ago. 2014. Disponível em: <https://aclanthology.org/W14-5811>
PURINGTON, A. et al. " Alexa is my new BFF" Social Roles, User Satisfaction, and Personification of the Amazon Echo. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. Anais...2017.
PURVER, M. et al. Split Utterances in Dialogue: a Corpus Study. Proceedings of the SIGDIAL 2009 Conference. Anais...London, UK: Association for Computational Linguistics, set. 2009. Disponível em: <https://aclanthology.org/W09-3937>
PURVER, M. R. J. The theory and use of clarification requests in dialogue. tese de doutorado—[s.l.] University of London, 2004.
QIU, Q. et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature. Earth Science Informatics, v. 12, n. 4, p. 565–579, 2019.
QUARESMA, P.; FINATTO, M. J. B. Information Extraction from Historical Texts: a Case Study. DHandNLP@ PROPOR. Anais...2020.
QUARESMA, P.; GONÇALVES, T. Using Linguistic Information and Machine Learning Techniques to Identify Entities from Juridical Documents. Em: FRANCESCONI, E. et al. (Eds.). Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 44–59.
QUARESMA, P.; RODRIGUES, I. Using dialogues to access semantic knowledge in a web IR system. Computational Processing of the Portuguese Language: 6th International Workshop, PROPOR 2003 Faro, Portugal, June 26–27, 2003 Proceedings 6. Anais...Springer, 2003. Disponível em: <https://doi.org/10.1007/3-540-45011-4_32>
QUARESMA, P.; RODRIGUES, I. A Question-Answering System for Portuguese Juridical Documents. Proceedings of the 10th International Conference on Artificial Intelligence and Law. Anais...: ICAIL ’05.New York, NY, USA: Association for Computing Machinery, 2005. Disponível em: <https://doi.org/10.1145/1165485.1165536>
QUINTANILHA, I. M.; NETTO, S. L.; BISCAINHO, L. W. P. An open-source end-to-end ASR system for Brazilian Portuguese using DNNs built from newly assembled corpora. Journal of Communication and Information Systems, v. 35, n. 1, p. 230–242, 2020.
QUINTANO, L.; RODRIGUES, I. Managing dialog and access control in natural language querying. Computational Processing of the Portuguese Language: 6th International Workshop, PROPOR 2003 Faro, Portugal, June 26–27, 2003 Proceedings 6. Anais...Springer, 2003. Disponível em: <https://doi.org/10.1007/3-540-45011-4_33>
RABINER, L. R.; JUANG, B. H. Fundamentals of Speech Recognition. [s.l.] Pearson Education, 1993.
RADEMAKER, A. et al. Universal Dependencies for Portuguese. Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017). Anais...Pisa,Italy: Linköping University Electronic Press, set. 2017. Disponível em: <https://aclanthology.org/W17-6523>
RADEV, D. R. A common theory of information fusion from multiple text sources step one: cross-document structure. 1st SIGdial workshop on Discourse and Dialogue. Anais...2000.
RADFORD, A. et al. Language Models are Unsupervised Multitask Learners. 2019.
RADFORD, A. et al. Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022.
RADFORD, A.; NARASIMHAN, K. Improving Language Understanding by Generative Pre-Training. 2018.
RAE, J. W. et al. Scaling Language Models: Methods, Analysis & Insights from Training Gopher. CoRR, v. abs/2112.11446, 2021.
RAFFEL, C. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, v. 21, n. 140, p. 1–67, 2020.
RAHMAN, A.; NG, V. Coreference Resolution with World Knowledge. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Anais...Portland, Oregon, USA: b2011. Disponível em: <http://www.aclweb.org/anthology/P11-1082>
RAHMAN, A.; NG, V. Narrowing the modeling gap: a cluster-ranking approach to coreference resolution. Journal of Artificial Intelligence Research, p. 469–521, a2011.
RAJI, D. et al. AI and the Everything in the Whole Wide World Benchmark. (J. Vanschoren, S. Yeung, Eds.)Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks. Anais...Curran, 2021. Disponível em: <https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper-round2.pdf>
RAJPURKAR, P. et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. (J. Su, K. Duh, X. Carreras, Eds.)Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Anais...Austin, Texas: Association for Computational Linguistics, nov. 2016. Disponível em: <https://aclanthology.org/D16-1264>
RAMISCH, C. Multiword Expressions Acquisition: A Generic and Open Framework. [s.l.] Springer, 2015. v. XIVp. 230
RAMISCH, C. et al. DeQue: A Lexicon of Complex Prepositions and Conjunctions in French. Proceedings of LREC 2016. Anais...Portoroz, Slovenia: ELRA, a2016.
RAMISCH, C. et al. How Naked is the Naked Truth? A Multilingual Lexicon of Nominal Compound Compositionality. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Anais...Berlin, Germany: ACL, b2016.
RAMISCH, C. et al. Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions. Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018). Anais...Santa Fe, NM, USA: ACL, a2018.
RAMISCH, C. et al. A Corpus Study of Verbal Multiword Expressions in Brazilian Portuguese. Computational Processing of the Portuguese Language 13th International Conference, PROPOR 2018, Canela, Brazil, September 24–26, 2018, Proceedings. Anais...: Lecture Notes em Artificial Intelligence.Cham, Switzerland: Springer International Publishing, b2018.
RAMISCH, C. et al. Edition 1.2 of the PARSEME Shared Task on Semi-supervised Identification of Verbal Multiword Expressions. Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons. Anais...online: Association for Computational Linguistics, 2020. Disponível em: <https://www.aclweb.org/anthology/2020.mwe-1.14>
RAMISCH, C. Multiword expressions in computational linguistics: down the rabbit hole and through the looking glass. tese de doutorado—Marseille, France: Aix Marseille University, 2023.
RAMISCH, C.; BESACIER, L.; KOBZAR, A. How hard is it to automatically translate phrasal verbs from English to French? MT Summit 2013 Workshop on Multi-word Units in Machine Translation and Translation Technology. Anais...Nice, France: 2013.
RAMISCH, C.; VILLAVICENCIO, A. Computational Treatment of Multiword Expressions. Em: MITKOV, R. (Ed.). The Oxford Handbook of Computational Linguistics. 2nd. ed. [s.l.] Oxford University Press, 2018.
RAMISCH, R. Caracterização de desvios sintáticos em redações de estudantes do ensino médio: subsídios para o processamento automático das línguas naturais. mathesis—[s.l.] Universidade Federal de São Carlos, 2020.
RANA, M. S. et al. Deepfake Detection: A Systematic Literature Review. IEEE Access, v. 10, p. 25494–25513, 2022.
RANCHHOD, E.; MOTA, C.; BAPTISTA, J. A Computational Lexicon of Portuguese for Automatic Text Parsing. SIGLEX99: Standardizing Lexical Resources. Anais...1999. Disponível em: <https://aclanthology.org/W99-0511>
RAO, K. S.; KOOLAGUDI, S. G.; VEMPADA, R. R. Emotion recognition from speech using global and local prosodic features. International journal of speech technology, v. 16, p. 143–160, 2013.
RASO, T. et al. O projeto C-ORAL-BRASIL. CHIMERA: Revista de Corpus de Lenguas Romances y Estudios Lingüı́sticos, v. 1, p. 31–67, 2015.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de referência do português brasileiro falado informal. Belo Horizonte: Editora UFMG, 2012a.
RASO, T.; MELLO, H. C-ORAL–BRASIL I: corpus de referência do português brasileiro falado informal. A general presentation. Speech and Corpora, p. 16, b2012.
RASO, T.; TEIXEIRA, B.; BARBOSA, P. Modelling automatic detection of prosodic boundaries for Brazilian Portuguese spontaneous speech. Journal of Speech Sciences, v. 9, p. 105–128, set. 2020.
RAU, L. F. Extracting company names from text. Proceedings the Seventh IEEE Conference on Artificial Intelligence Application. Anais...IEEE Computer Society, 1991.
RAYNER, K. Eye Movements in Reading and Information Processing: 20 Years of Research. Psychological Bulletin - APA, vol. 124 n. 3, p. 372–422, 1998.
READ, J. et al. Sentence Boundary Detection: A Long Solved Problem? Proceedings of COLING 2012: Posters. Anais...Mumbai, India: The COLING 2012 Organizing Committee, dez. 2012. Disponível em: <https://aclanthology.org/C12-2096>
REAL, L.; FONSECA, E.; GONÇALO OLIVEIRA, H. Organizing the ASSIN 2 Shared Task. Proceedings of the ASSIN 2 Shared Task: Evaluating Semantic Textual Similarity and Textual Entailment in Portuguese: co-located with XII Symposium in Information and Human Language Technology (STIL 2019). Anais...2019. Disponível em: <https://ceur-ws.org/Vol-2583/1_ASSIN-2.pdf>
REAL, L.; FONSECA, E.; GONÇALO OLIVEIRA, H. The ASSIN 2 Shared Task: A Quick Overview. Computational Processing of the Portuguese Language: 14th International Conference, PROPOR 2020, Evora, Portugal, March 2–4, 2020, Proceedings. Anais...Berlin, Heidelberg: Springer-Verlag, 2020. Disponível em: <https://doi.org/10.1007/978-3-030-41505-1_39>
RECASENS, M.; HOVY, E. H. BLANC: Implementing the Rand index for coreference evaluation. Natural Language Engineering, v. 17, n. 4, p. 485–510, 2011.
RECUERO, R. Redes Sociais na Internet. [s.l.] Ciber Cultura, 2009.
REDDY, S.; MCCARTHY, D.; MANANDHAR, S. An Empirical Study on Compositionality in Compound Nouns. Proceedings of 5th International Joint Conference on Natural Language Processing. Anais...Chiang Mai, Thailand: Asian Federation of Natural Language Processing, nov. 2011. Disponível em: <https://aclanthology.org/I11-1024>
REI, R. et al. COMET: A Neural Framework for MT Evaluation. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.emnlp-main.213>
REIMERS, N.; GUREVYCH, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Anais...Association for Computational Linguistics, nov. 2019. Disponível em: <https://arxiv.org/abs/1908.10084>
REIMERS, N.; GUREVYCH, I. Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Anais...Association for Computational Linguistics, nov. 2020. Disponível em: <https://arxiv.org/abs/2004.09813>
REIS, E. S.; SILVA, L. A. DA. Planejamento e replanejamento dos turnos conversacionais. Cadernos do CNLF, v. 17, n. 2, p. 1–2013, 2013.
REIS, G. B. Predição da Complexidade Textual de Notícias Jornalísticas usando uma Plataforma Crowdsourcing. Monografia Conclusão Curso - USP, 2017.
REITER, E. et al. Choosing Words in Computer-generated Weather Forecasts. Artificial Intelligence, v. 167, n. 1-2, p. 137–169, set. 2005.
REITER, E. An Architecture for Data-to-text Systems. Proceedings of ENLG-2007. Anais...: ENLG’07.Germany: Association for Computational Linguistics, 2007. Disponível em: <http://dl.acm.org/citation.cfm?id=1610163.1610180>
REITER, E. A Structured Review of the Validity of BLEU. Computational Linguistics, v. 44, n. 3, p. 393–401, 2018.
REITER, E.; DALE, R. Building natural language generation systems. New York, NY, USA: Cambridge University Press, 2000.
REITER, E.; ROBERTSON, R.; OSMAN, L. M. Lessons from a failure: Generating tailored smoking cessation letters. Artificial Intelligence, v. 144, n. 1, p. 41–58, 2003.
RESENDE, G. et al. (Mis)Information Dissemination in WhatsApp: Gathering, Analyzing and Countermeasures. Proceedings of the World Wide Web Conference. Anais...2019.
RESNIK, P.; LIN, J. Evaluation of NLP systems. Em: The handbook of computational linguistics and natural language processing. [s.l.] Wiley Online Library, 2010. p. 271–295.
REVIEW, M. T. Um aplicativo de Inteligência Artificial que “desnudava” mulheres mostra como as deepfakes prejudicam os mais vulneráveis. Disponível em: < https://mittechreview.com.br/um-aplicativo-de-inteligencia-artificial-que-desnudava-mulheres-mostra-como-as-deepfakes-prejudicam-os-mais-vulneraveis/>. Acesso em: 28 ago. 2023.
REYES, A.; ROSSO, P.; BUSCALDI, D. From Humor Recognition to Irony Detection: The Figurative Language of Social Media. Data & Knowledge Engineering, 2012.
RIBEIRO, A. S. O projecto MONSOON: perspectivas digitais da Índia portuguesa. Actas da Jornada de Humanidades Digitais do CIDEHUS (to appear). Anais...2022.
RIBEIRO, M. T. et al. Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Online: Association for Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.442>
RICARTE NETO, F. A. et al. Team PiLN at ABSAPT 2022: Lexical and BERT Strategies for Aspect-Based Sentiment Analysis in Portuguese. Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, September 20, 2022. Anais...2022.
RICKARD, E. M. S. A. M. L. K. A. B. D. F. A. N. S. Predicting Depression From Language-Based Emotion Dynamics: Longitudinal Analysis of Facebook and Twitter Status Updates. Journal of Medical Internet Research, v. 20, n. 5, p. e168, 2018.
RIESER, V.; LEMON, O. Reinforcement learning for adaptive dialogue systems: a data-driven methodology for dialogue management and natural language generation. [s.l.] Springer Science & Business Media, 2011.
RIJSBERGEN, C. JOOST. VAN. Information Retrieval. [s.l.] Butterworths, 1979.
RILOFF, E. et al. Automatically constructing a dictionary for information extraction tasks. AAAI. Anais...Citeseer, 1993.
RILOFF, E.; JONES, R.; et al. Learning dictionaries for information extraction by multi-level bootstrapping. AAAI/IAAI. Anais...1999.
RINO, L. H. M.; PARDO, T. A. S. A Sumarização Automática de textos: principais caracterı́sticas e metodologias. Anais do XXIII Congresso da Sociedade Brasileira de Computação. Anais...2003.
RIZZOLATTI, G.; ARBIB, M. A. Language within our grasp. Trends in Neurosciences, v. 21, n. 5, p. 188–194, 1998.
RO, Y.; LEE, Y.; KANG, P. Multi^2OIE: Multilingual Open Information Extraction Based on Multi-Head Attention with BERT. Findings of the Association for Computational Linguistics: EMNLP 2020. Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.findings-emnlp.99>
ROARK, B.; CHARNIAK, E. Noun-phrase co-occurrence statistics for semi-automatic semantic lexicon construction. arXiv preprint cs/0008026, 2000.
ROBERTS, A. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. [s.l.] Google, 2019.
ROBERTS, F.; FRANCIS, A. L.; MORGAN, M. The interaction of inter-turn silence with prosodic cues in listener perceptions of “trouble” in conversation. Speech communication, v. 48, n. 9, p. 1079–1093, 2006.
ROBERTSON, S. E.; SPÄRCK JONES, K. Relevance weighting of search terms. Journal of the American Society for Information science, v. 27, n. 3, p. 129–146, 1976.
ROBERTSON, S. E.; WALKER, S. Okapi/keenbow at trec-8. TREC. Anais...Citeseer, 1999. Disponível em: <https://trec.nist.gov/pubs/trec8/papers/okapi.pdf>
ROCCHIO-JR, J. J. Relevance feedback in information retrieval. The SMART retrieval system: experiments in automatic document processing, 1971.
ROCHA, E. B.; PIMENTEL, M.; DINIZ, M. C. Desenvolvimento de um Modelo da Participação em Bate papo seguindo a abordagem Design Science Research. Anais do X Simpósio Brasileiro de Sistemas de Informação. Anais...Porto Alegre, RS, Brasil: SBC, 2014. Disponível em: <https://sol.sbc.org.br/index.php/sbsi/article/view/6099>
ROCHA, M. A corpus-based study of anaphora in English and Portuguese, Corpus-based and Computational Approaches to Discourse Anaphora. Em: [s.l.] John Benjamins Publishing Company, 2000. p. 81–94.
ROCHA, P.; SANTOS, D. CLEF: Abrindo a porta à participação internacional em avaliação de RI do português. Em: SANTOS, D. (Ed.). Avaliação conjunta: um novo paradigma no processamento computacional da língua portuguesa. Lisboa, Portugal: IST Press, 2007. p. 143–158.
RODRIGUES, I. M. G. Fala e movimentos do corpo na interacção face a face: estratégias de reparação e de (des) focalização e co-funções conversacionais na manutenção de vez. tese de doutorado—[s.l.] Universidade do Porto, 2003.
RODRIGUES, J. et al. Advancing Neural Encoding of Portuguese with Transformer Albertina PT-. CoRR, v. abs/2305.06721, 2023.
RODRIGUES, R. C. et al. Portuguese Language Models and Word Embeddings: Evaluating on Semantic Similarity Tasks. (P. Quaresma et al., Eds.)Computational Processing of the Portuguese Language. Anais...Springer Nature Switzerland AG: Springer International Publishing, 2020.
RODRIGUES, R.; GOMES, P. RAPPORT — A Portuguese Question-Answering System. (F. Pereira et al., Eds.)Progress in Artificial Intelligence. Anais...Cham: Springer International Publishing, 2015.
RODRÍGUEZ, M. M.; BEZERRA, B. L. D. Processamento de linguagem natural para reconhecimento de entidades nomeadas em textos jurı́dicos de atos administrativos (portarias). Revista de Engenharia e Pesquisa Aplicada, v. 5, n. 1, p. 67–77, 2020.
ROGERS, A. Changing the World by Changing the Data. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Anais...Online: Association for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-long.170>
ROGERS, A.; KOVALEVA, O.; RUMSHISKY, A. A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, v. 8, p. 842–866, 2021.
ROHANIAN, O. et al. Verbal Multiword Expressions for Identification of Metaphor. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Online: Association for Computational Linguistics, jul. 2020. Disponível em: <https://aclanthology.org/2020.acl-main.259>
ROLLER, S.; SCHULTE IM WALDE, S. Feature Norms of German Noun Compounds. (V. Kordoni et al., Eds.)Proceedings of the 10th Workshop on Multiword Expressions (MWE). Anais...Gothenburg, Sweden: Association for Computational Linguistics, abr. 2014. Disponível em: <https://aclanthology.org/W14-0818>
ROLLER, S.; SCHULTE IM WALDE, S.; SCHEIBLE, S. The (Un)expected Effects of Applying Standard Cleansing Models to Human Ratings on Compositionality. Proceedings of the 9th Workshop on Multiword Expressions. Anais...Atlanta, Georgia, USA: Association for Computational Linguistics, jun. 2013. Disponível em: <https://aclanthology.org/W13-1005>
ROMERA-PAREDES, B.; TORR, P. H. S. An embarrassingly simple approach to zero-shot learning. (F. R. Bach, D. M. Blei, Eds.)Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. Anais...: JMLR Workshop e Conference Proceedings.JMLR.org, 2015. Disponível em: <http://proceedings.mlr.press/v37/romera-paredes15.html>
RONCARATI, C. As cadeias do texto: construindo sentidos. [s.l.] Parábola, 2010.
ROSA, G. M. et al. Yes, bm25 is a strong baseline for legal case retrieval. arXiv preprint arXiv:2105.05686, b2021.
ROSA, G. M. et al. A cost-benefit analysis of cross-lingual transfer methods. arXiv preprint arXiv:2105.06813, a2021.
ROSÉN, V. et al. MWEs in Treebanks: From Survey to Guidelines. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...Portorož, Slovenia: European Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1368>
ROSSANO, F. Gaze in conversation. The handbook of conversation analysis, p. 308–329, 2012.
ROSSI, D. et al. Identifying pedagogical intervention in MOOCs learning processes: a conversational agent proposal. Anais do XXXII Simpósio Brasileiro de Informática na Educação. Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível em: <https://sol.sbc.org.br/index.php/sbie/article/view/18112>
ROTH, D.; YIH, W. Global inference for entity and relation identification via a linear programming formulation. Introduction to statistical relational learning, p. 553–580, 2007.
ROTHE, S.; NARAYAN, S.; SEVERYN, A. Leveraging Pre-trained Checkpoints for Sequence Generation Tasks. Transactions of the Association for Computational Linguistics, v. 8, p. 264–280, 2020.
RUANE, E.; BIRHANE, A.; VENTRESQUE, A. Conversational AI: Social and Ethical Considerations. AICS. Anais...2019. Disponível em: <https://ceur-ws.org/Vol-2563/aics_12.pdf>
RUBIN, V. L. TALIP Perspectives, Guest Editorial Commentary: Pragmatic and Cultural Considerations for Deception Detection in Asian Languages. v. 13, n. 2, p. 10:1–10:8, 2014.
RUBIN, V. L.; CHEN, Y.; CONROY, N. J. Deception detection for news: Three types of fakes. Proceedings of the Association for Information Science and Technology, v. 52, n. 1, p. 1–4, 2015.
RUBIN, V. L.; CONROY, N. J. Challenges in automated deception detection in computer-mediated communication. Proceedings of the American Society for Information Science and Technology, v. 48, n. 1, p. 1–4, 2011.
RUITER, J. P. DE. Turn-Taking. Em: The Oxford Handbook of Experimental Semantics and Pragmatics. [s.l.] Oxford University Press, 2019.
RUPPENHOFER, J. et al. FrameNet II: Extended theory and practice. [s.l: s.n.].
RUSSEL, S. Human Compatible Artificial Intelligence and the Problem of Control. [s.l.] Penguin Books, 2019.
RUSSELL, M. A. Mineração de Dados da Web Social. Primeira edição ed. São Paulo: O’Reilly Novatec, 2011.
RUSSELL-ROSE, T.; CHAMBERLAIN, J.; AZZOPARDI, L. Information retrieval in the workplace: A comparison of professional search practices. Information Processing & Management, v. 54, n. 6, p. 1042–1057, 2018.
SACKS, H.; SCHEGLOFF, E. A.; JEFFERSON, G. A simplest systematics for the organization of turn taking for conversation. Em: Studies in the organization of conversational interaction. [s.l.] Elsevier, 1978. p. 7–55.
SACRAMENTO, A. DA S. B.; SOUZA, M. Joint Event Extraction with Contextualized Word Embeddings for the Portuguese Language. Brazilian Conference on Intelligent Systems. Anais...Springer, 2021.
SADOCK, J. Speech acts. Em: The handbook of pragmatics. [s.l.] Wiley Online Library, 2006. p. 53–73.
SAEKI, T. et al. Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised Learning for Text-To-Speech., 2023. Disponível em: <https://arxiv.org/abs/2210.15447>
SAG, I. A. et al. Multiword Expressions: A Pain in the Neck for NLP. Conference on Intelligent Text Processing and Computational Linguistics. Anais...2002. Disponível em: <https://api.semanticscholar.org/CorpusID:1826481>
SAGER, N. Natural language information formatting: the automatic conversion of texts to a structured data base. Em: Advances in computers. [s.l.] Elsevier, 1978. v. 17p. 89–162.
SAGER, N.; FRIEDMAN, C.; LYMAN, M. S. Medical language processing: computer management of narrative data. [s.l.] Addison-Wesley Longman Publishing Co., Inc., 1987.
SAI, A. B.; MOHANKUMAR, A. K.; KHAPRA, M. M. A Survey of Evaluation Metrics Used for NLG Systems. ACM Comput. Surv., v. 55, n. 2, p. 26:1–26:39, 2023.
SAKIYAMA, K. M. Geração Automática de Verbetações para Recuperação de Informações no Domı́nio Jurı́dico Brasileiro. mathesis—[s.l.] Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, 2023.
SALESKY, E. et al. The multilingual tedx corpus for speech recognition and translation. arXiv preprint arXiv:2102.01757, 2021.
SALMINEN, J. et al. Creating and detecting fake reviews of online products. Journal of Retailing and Consumer Services, v. 64, p. 102771, 2022.
SALOMÃO, M. M. M. FrameNet Brasil: A work in progress. Calidoscópio, v. 7, p. 171–182, 2009.
SALTON, G.; ALLAN, J. Text retrieval using the vector processing model. dez. 1994.
SALTON, G.; MCGILL, M. J. Introduction to Modern Information Retrieval. [s.l.] McGraw-Hill, 1983.
SALVI, C. et al. Going Viral: How Fear, Socio-Cognitive Polarization and Problem-Solving Influence Fake News Detection and Proliferation During COVID-19 Pandemic. Frontiers in Communication, v. 5, p. 127, 2021.
SAMY, D. Reconocimiento y clasificación de entidades nombradas en textos legalesen español. Procesamiento del lenguaje natural, v. 67, p. 103–114, 2021.
SANCHES, M. F. et al. Textual Datasets For Portuguese-Brazilian Language Models. Anais do IV Dataset Showcase Workshop. Anais...SBC, 2022. Disponível em: <https://doi.org/10.5753/dsw.2022.224294>
SANDERSON, M. et al. Test collection based evaluation of information retrieval systems. Foundations and Trends in Information Retrieval, v. 4, n. 4, p. 247–375, 2010.
SANG, E. F. T. K. Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition. Proceedings of CoNLL-2002. Anais...Taipei, Taiwan: 2002. Disponível em: <https://aclanthology.org/W02-2024/>
SANG, E. F. T. K.; DE MEULDER, F. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003. Anais...2003. Disponível em: <https://aclanthology.org/W03-0419>
SANH, V. et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR, v. abs/1910.01108, 2019.
SANSONE, C.; SPERLÍ, G. Legal Information Retrieval systems: State-of-the-art and open issues. Information Systems, v. 106, p. 101967, 2022.
SANTANA, B. P. Morfologia ornamental: as vogais temáticas do português brasileiro o Unitex-PB. mathesis—Curitiba, PR: Universidade Federal do Paraná, Setor de Ciências Humanas, Programa de Pós-Graduação em Letras, 2019.
SANTANA, B. S. A computational-linguistic-based approach to support the analysis of the discursive configuration of violence on social media. tese de doutorado—[s.l.] Universidade Federal do Rio Grande do Sul, 2023.
SANTHANAM, S.; SHAIKH, S. A survey of natural language generation techniques with a focus on dialogue systems-past, present and future directions. arXiv preprint arXiv:1906.00500, 2019.
SANTOS, A. A. et al. O teste de Cloze na avaliação da compreensão em leitura. Psicologia: reflexão e crı́tica, v. 15, p. 549–560, 2002.
SANTOS, C. N. DOS; GUIMARÃES, V. Boosting Named Entity Recognition with Neural Character Embeddings. (X. Duan et al., Eds.)Proceedings of the 5th Named Entity Workshop. Anais...Association for Computational Linguistics, 2015.
SANTOS, D. O projecto Processamento Computacional do Português: Balanço e perspectivas. (M. das Graças Volpe Nunes, Ed.)V Encontro para o processamento computacional da língua portuguesa escrita e falada (PROPOR 2000). Anais...São Paulo: ICMC/USP, 2000. Disponível em: <https://www.linguateca.pt/Diana/download/SantosPROPOR2000.pdf>
SANTOS, D. Evaluation in natural language processing., a2007. Disponível em: <http://www.linguateca.pt/Diana/download/EvaluationESSLLI07.pdf>
SANTOS, D. Avaliação conjunta. Em: SANTOS, D. (Ed.). Avaliação conjunta: um novo paradigma no processamento computacional da língua portuguesa. Lisboa, Portugal: IST Press, 2007c. p. 1–12.
SANTOS, D. (ED.). Avaliação conjunta: um novo paradigma no processamento computacional da língua portuguesa. Lisboa, Portugal: IST Press, 2007b.
SANTOS, D. Caminhos percorridos no mapa da portuguesificação: A Linguateca em perspectiva. Linguamática, v. 1, n. 1, p. 25–59, 2009.
SANTOS, D. et al. GikiP at GeoCLEF 2008: Joining GIR and QA forces for querying Wikipedia. Em: PETERS, C. et al. (Eds.). Evaluating Systems for Multilingual and Multimodal Information Access 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17-19, 2008, Revised Selected Papers. [s.l.] Springer, 2009. p. 894–905.
SANTOS, D. et al. GikiCLEF: Crosscultural issues in multilingual information access. (N. Calzolari et al., Eds.)Proceedings of the International Conference on Language Resources and Evaluation (LREC 2010). Anais...Valletta, Malta: European Language Resources Association, 2010. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2010/pdf/272_Paper.pdf>
SANTOS, D. et al. (EDS.). Edição especial Págico - português mágico. [s.l.] Linguamática, 2012. v. 4
SANTOS, D. Evaluation contests in Portuguese: Linguateca’s contribution., 2021. Disponível em: <https://www.linguateca.pt/Diana/download/AvalConjLRE16May2021.pdf>
SANTOS, D. et al. DIP - Desafio de Identificação de Personagens: objectivo, organização, recursos e resultados. Linguamática, v. 15, n. 1, p. 3–30, a2023.
SANTOS, D.; CABRAL, L. M. GikiCLEF : Expectations and lessons learned. Em: PETERS, C. et al. (Eds.). Multilingual Information Access Evaluation, VOL I. [s.l.] Springer, 2010. p. 212–222.
SANTOS, D.; CARDOSO, N. Breve introdução ao HAREM. (D. Santos, N. Cardoso, Eds.)Reconhecimento de entidades mencionadas em português: Documentação e actas do HAREM, a primeira avaliação conjunta na área. Anais...Linguateca, a2007. Disponível em: <http://www.linguateca.pt/LivroHAREM/>
SANTOS, D.; CARDOSO, N. A golden resource for named entity recognition in portuguese. Proceeding of the 7th International conference on the computational processing of portuguese. Anais...Springer, b2007.
SANTOS, D.; CARDOSO, N.; SECO, N. Avaliação no HAREM: Métodos e medidas. (D. Santos, N. Cardoso, Eds.)Reconhecimento de entidades mencionadas em português: Documentação e actas do HAREM, a primeira avaliação conjunta na área. Anais...Linguateca, 2007.
SANTOS, D.; COSTA, L.; ROCHA, P. Cooperatively evaluating Portuguese morphology. (J. Baptista et al., Eds.)Computational Processing of the Portuguese Language: 6th International Workshop, PROPOR 2003. Faro, Portugal, June 2003 (PROPOR 2003). Anais...Berlin/Heidelberg: Springer Verlag, 2003.
SANTOS, D.; ROCHA, P. AvalON: uma iniciativa de avaliação conjunta para o português. (A. Mendes, T. Freitas, Eds.)Actas do XVIII Encontro Nacional da Associação Portuguesa de Linguística (APL 2002). Anais...Lisboa: APL, 2003. Disponível em: <https://www.linguateca.pt/Diana/download/SantosRochaAPL2002.pdf>
SANTOS, D.; ROCHA, P. The key to the first CLEF with Portuguese: Topics, questions and answers in CHAVE. Workshop of the Cross-Language Evaluation Forum for European Languages. Anais...2004.
SANTOS, F. R. DOS et al. EDUARDO - A Semantic Model for Automatic Content Integration with an Conversational Intelligent Agent. Anais do XXII Simpósio Brasileiro de Sistemas Multimídia e Web. Anais...Porto Alegre, RS, Brasil: SBC, 2016. Disponível em: <https://sol.sbc.org.br/index.php/webmedia/article/view/5372>
SANTOS, F.; FREITAS, T. CORP-ORAL: Spontaneous Speech Corpus for European Portuguese. Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08). Anais...Marrakech, Morocco: European Language Resources Association (ELRA), 2008. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2008/pdf/331_paper.pdf>
SANTOS, H. D. P. DOS et al. Fall Detection in EHR using Word Embeddings and Deep Learning. 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). Anais...a2019.
SANTOS, H. D. P. D.; ULBRICH, A. H. D. P. S.; VIEIRA, R. Evaluation of a Prescription Outlier Detection System in Hospital’s Pharmacy Services. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Anais...IEEE, a2021.
SANTOS, J. et al. Assessing the Impact of Contextual Embeddings for Portuguese Named Entity Recognition. Proceedings of the 8th Brazilian Conference on Intelligent Systems. Anais...b2019.
SANTOS, J. et al. De-identification of clinical notes using contextualized language models and a token classifier. Brazilian Conference on Intelligent Systems. Anais...Springer, b2021.
SANTOS, J. et al. Named entity recognition specialised for Portuguese 18th-century History research. Proceedings of the International Conference on the Computational treatment of Portuguese, PROPOR, a2024.
SANTOS, J.; ALVES, A.; GONÇALO OLIVEIRA, H. Leveraging on Semantic Textual Similarity for developing a Portuguese dialogue system. International Conference on Computational Processing of the Portuguese Language. Anais...Springer, a2020. Disponível em: <https://doi.org/10.1007/978-3-030-41505-1_13>
SANTOS, J.; SANTOS, H. D. P. DOS; VIEIRA, R. Fall Detection in Clinical Notes using Language Models and Token Classifier. (A. G. S. de Herrera et al., Eds.)Proceedings of the 33rd IEEE International Symposium on Computer-Based Medical Systems. Anais...b2020.
SANTOS, L. B. DOS et al. A Lightweight Regression Method to Infer Psycholinguistic Properties for Brazilian Portuguese. International Conference on Text, Speech, and Dialogue, p. 281–289, 2017.
SANTOS, R. et al. Measuring the Impact of Readability Features in Fake News Detection. (N. Calzolari et al., Eds.)Proceedings of the Twelfth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, c2020. Disponível em: <https://aclanthology.org/2020.lrec-1.176>
SANTOS, R. L. DE S. Detecção Automática de Notícias Falsas em Português. Ph.D. Thesis—São Carlos, Brazil: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2022.
SANTOS, R. L. DE S.; PARDO, T. A. S. Fact-Checking for Portuguese: Knowledge Graph and Google Search-Based Methods. Proceedings of the 14th International Conference on the Computational Processing of Portuguese (PROPOR). Anais...: Lecture Notes em Artificial Intelligence (LNAI).Évora, Portugal: Springer, 2020.
SANTOS, R. L. DE S.; PARDO, T. A. S. Structural Characterization and Graph-based Detection of Fake News in Portuguese. Proceedings of the XIV Symposium in Information and Human Language (STIL). Anais...2021.
SANTOS SILVA, D. DOS; PARABONI, I. Generating Spatial Referring Expressions in Interactive 3D Worlds. Spatial Cognition & Computation, v. 15, n. 03, p. 186–225, 2015.
SANTOS, V. G. et al. CORAA NURC-SP Minimal Corpus: a manually annotated corpus of Brazilian Portuguese spontaneous speech. Proc. IberSPEECH 2022. Anais...2022.
SANTOS, W. R. DOS; FUNABASHI, A. M. M.; PARABONI, I. Searching Brazilian Twitter for signs of mental health issues. 12th International Conference on Language Resources and Evaluation (LREC-2020). Anais...Marseille, France: ELRA, d2020.
SANTOS, W. R. DOS; OLIVEIRA, R. L. DE; PARABONI, I. SetembroBR: a social media corpus for depression and anxiety disorder prediction. Language Resources and Evaluation, v. 58, n. 1, p. 273–300, b2024.
SANTOS, W. R. DOS; PARABONI, I. Predição de transtorno depressivo em redes sociais: BERT supervisionado ou ChatGPT zero-shot? XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana (STIL-2023). Anais...Porto Alegre, Brasil: SBC, 2023. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25433>
SANTOS, W. R. DOS; PARABONI, I. Prompt-based mental health screening from social media text. Brazilian Workshop on Social Network Analysis and Mining (BraSNAM-2024). Anais...Brasilia, DF: 2024.
SANTOS, W. R. DOS; YOON, S.; PARABONI, I. Mental Health Prediction from Social Media Text Using Mixture of Experts. IEEE Latin America Transactions, v. 21, n. 6, p. 723–729, b2023.
SAQUETE, E. et al. Fighting Post-truth using Natural Language Processing: A Review and Open Challenges. Expert Systems with Applications, v. 141, p. 112943, 2019.
SARAH HICKEY. Nimdzi 100 - Language Services Industry Market Report 2020.pdf. [s.l: s.n.].
SARDINHA, T. B. Lingüística de Corpus: histórico e problemática. DELTA: Documentação de Estudos em Lingüística Teórica e Aplicada, v. 16, n. 2, p. 323–367, 2000.
SARMENTO, C. DA S. Da Abordagem do Léxico em Livros Didáticos de Língua Portuguesa: os Anos Finais do Ensino Fundamental. mathesis—Brasília: UnB, 2019.
SARMENTO, L.; PINTO, A. S.; CABRAL, L. REPENTINO – a wide-scope gazetteer for entity recognition in portuguese. Proceedings of International Workshop on Computational Processing of the Portuguese Language. Anais...Springer, 2006.
SARTORI, L.; THEODOROU, A. A Sociotechnical Perspective for the Future of AI: Narratives, Inequalities, and Human Control. Ethics and Inf. Technol., v. 24, n. 1, mar. 2022.
SAURÍ, R. et al. TimeML Annotation Guidelines, Version 1.2.1., 2006. Disponível em: <https://nilsreiter.de/assets/2017-10-01-howto-annotation/timeml-1.2.1.pdf>
SAVARY, A. et al. Literal Occurrences of Multiword Expressions: Rare Birds That Cause a Stir. The Prague Bulletin of Mathematical Linguistics, v. 112, p. 5–54, 2019b2019b.
SAVARY, A. et al. PARSEME – parsing and multiword Expressions within a European multilingual network. Proc. of LTC 2015. Anais...Poznań: 2015.
SAVARY, A. et al. The PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions. Proceedings of the 13th Workshop on MWEs. Anais...Valencia, Spain: ACL, 2017.
SAVARY, A. et al. PARSEME multilingual corpus of verbal multiword expressions. Em: MARKANTONATOU, S. et al. (Eds.). Multiword expressions at length and in depth: Extended papers from the MWE 2017 workshop. Phraseology e Multiword Expressions. Berlin, Germany: Language Science Press, 2018. v. 2.
SAVARY, A. et al. Object-oriented lexical encoding of multiword expressions: Short and sweet. Lexique, n. 27, p. 87–120, 2020.
SAVARY, A. et al. PARSEME Meets Universal Dependencies: Getting on the Same Page in Representing Multiword Expressions. Northern European Journal of Language Technology, v. 9, p. 14, a2023.
SAVARY, A. et al. PARSEME corpus release 1.3. Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023). Anais...Dubrovnik, Croatia: Association for Computational Linguistics, b2023.
SAVARY, A.; CORDEIRO, S.; RAMISCH, C. Without lexicons, multiword expression identification will never fly: A position statement. Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019). Anais...Florence, Italy: Association for Computational Linguistics, 2019a2019a. Disponível em: <https://aclanthology.org/W19-5110>
SCAO, T. L. et al. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. CoRR, v. abs/2211.05100, 2022.
SCARTON, C. et al. Simplifica: a tool for authoring simplified texts in Brazilian Portuguese guided by readability assessments. Proceedings of the 2010 Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies, p. 41–44, 2010.
SCARTON, C. E.; ALUISIO, S. M. Towards a cross-linguistic VerbNet-style lexicon for Brazilian portuguese. Workshop on Creating Cross-language Resources for Disconnected Languages and Styles - CREDISLAS. Anais...ELRA, 2012.
SCARTON, C. E.; ALUÍSIO, S. M. Análise da Inteligibilidade de textos via ferramentas de Processamento de Língua Natural: adaptando as métricas do Coh-Metrix para o Português. Linguamática, v. 2, n. 1, p. 45–61, 2010.
SCARTON, C.; SPECIA, L. Learning Simplifications for Specific Target Audiences. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), p. 712–718, 2018.
SCHANK, R. C. et al. MARGIE: Memory Analysis Response Generation, and Inference on English. IJCAI. Anais...1973.
SCHEGLOFF, E. A. Overlapping talk and the organization of turn-taking for conversation. Language in society, v. 29, n. 1, p. 1–63, 2000.
SCHEGLOFF, E. A.; JEFFERSON, G.; SACKS, H. The preference for self-correction in the organization of repair in conversation. Language, v. 53, n. 2, p. 361–382, 1977.
SCHEGLOFF, E. A.; SACKS, H. Opening up closings. Semiotica, 1973.
SCHICK, T.; SCHÜTZE, H. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference. (P. Merlo, J. Tiedemann, R. Tsarfaty, Eds.)Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.eacl-main.20>
SCHLANGEN, D. Language tasks and language games: On methodology in current natural language processing research. arXiv preprint arXiv:1908.10747, 2019.
SCHLANGEN, D. Targeting the Benchmark: On Methodology in Current Natural Language Processing Research. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Anais...Online: Association for Computational Linguistics, ago. 2021. Disponível em: <https://aclanthology.org/2021.acl-short.85>
SCHLANGEN, D. Norm Participation Grounds Language. Proceedings of the 2022 CLASP Conference on (Dis)embodiment. Anais...Gothenburg, Sweden: Association for Computational Linguistics, set. 2022. Disponível em: <https://aclanthology.org/2022.clasp-1.7>
SCHLANGEN, D. What A Situated Language-Using Agent Must be Able to Do: A Top-Down Analysis., b2023. Disponível em: <https://arxiv.org/abs/2302.08590>
SCHLANGEN, D. Dialogue games for benchmarking language understanding: Motivation, taxonomy, strategy. arXiv preprint arXiv:2304.07007, a2023.
SCHLANGEN, D. On General Language Understanding. (H. Bouamor, J. Pino, K. Bali, Eds.)Findings of the Association for Computational Linguistics: EMNLP 2023. Anais...Singapore: Association for Computational Linguistics, dez. c2023. Disponível em: <https://aclanthology.org/2023.findings-emnlp.591>
SCHLANGEN, D.; SKANTZE, G. A general, abstract model of incremental dialogue processing. Dialogue & Discourse, v. 2, n. 1, p. 83–111, 2011.
SCHMID, H. Part-of-Speech Tagging with Neural Networks., 1994. Disponível em: <https://arxiv.org/abs/cmp-lg/9410018>
SCHMIDHUBER, J.; HEIL, S. Sequential neural text compression. IEEE Transactions on Neural Networks, v. 7, n. 1, p. 142–146, 1996.
SCHMITZ, M. et al. Open language learning for information extraction. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Anais...: EMNLP-CoNLL ’12.Stroudsburg, PA, USA: Association for Computational Linguistics; Association for Computational Linguistics, 2012. Disponível em: <http://dl.acm.org/citation.cfm?id=2390948.2391009>
SCHNEIDER, E. T. R. et al. BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition. (A. Rumshisky et al., Eds.)Proceedings of the 3rd Clinical Natural Language Processing Workshop. Anais...Online: Association for Computational Linguistics, nov. 2020. Disponível em: <https://aclanthology.org/2020.clinicalnlp-1.7>
SCHNEIDER, E. T. R. et al. A GPT-2 Language Model for Biomedical Texts in Portuguese. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). Anais...2021.
SCHNEIDER, E. T. R. et al. CardioBERTpt: Transformer-based Models for Cardiology Language Representation in Portuguese. 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS). Anais...2023.
SCHNEIDER, N. et al. SemEval-2016 Task 10: Detecting Minimal Semantic Units and their Meanings (DiMSUM). Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). Anais...San Diego, California: Association for Computational Linguistics, 2016. Disponível em: <https://aclanthology.org/S16-1084>
SCHNEIDER, N.; SMITH, N. A. A Corpus and Model Integrating Multiword Expressions and Supersenses. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...Denver, Colorado: Association for Computational Linguistics, 2015. Disponível em: <https://www.aclweb.org/anthology/N15-1177>
SCHONE, P.; JURAFSKY, D. Is Knowledge-Free Induction of Multiword Unit Dictionary Headwords a Solved Problem? (L. Lee, D. Harman, Eds.)Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing. Anais...2001.
SCHRAAGEN, M. et al. Evaluation of Named Entity Recognition in Dutch online criminal complaints. Computational Linguistics in the Netherlands Journal, v. 7, p. 3–16, 2017.
SCHRIML, L. M. et al. Disease Ontology: a backbone for disease semantic integration. Nucleic acids research, v. 40, n. D1, p. D940–D946, 2012.
SCHRÖDER, U. The interplay of verbal, vocal, and visual cues in the co-construction of the experience of alterity in exchange students’ talk. Journal of Pragmatics, v. 81, p. 21–35, 2015.
SCHUBERT, G.; FREITAS, L. A. DE. A Construção de um Corpus para Detecção de Ironia e Sarcasmo em Português. Anais do XVII Encontro Nacional de Inteligência Artificial e Computacional. Anais...2020.
SCHULTE IM WALDE, S. et al. GhoSt-NN: A Representative Gold Standard of German Noun-Noun Compounds. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Anais...Portorož, Slovenia: European Language Resources Association (ELRA), 2016. Disponível em: <https://aclanthology.org/L16-1362>
SCHUSTER, M.; NAKAJIMA, K. Japanese and Korean voice search. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Anais...2012.
SCHUSTER, M.; PALIWAL, K. K. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, v. 45, n. 11, p. 2673–2681, 1997.
SEARA, I. Estudo Estatístico dos Fonemas do Português Brasileiro Falado na Capital de Santa Catarina para Elaboração de Frases Foneticamente Balanceadas. tese de doutorado—[s.l.] Dissertação de Mestrado, Universidade Federal de Santa Catarina …, 1994.
SECO, N. et al. A Complex Evaluation Architecture for HAREM. (R. Vieira et al., Eds.)Computational Processing of the Portuguese Language: 7th International Workshop, PROPOR 2006. Anais...Springer, 2006.
SEKINE, S. Description of the Japanese NE system used for MET-2. Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1, 1998. Anais...1998.
SELLAM, T.; DAS, D.; PARIKH, A. P. BLEURT: Learning Robust Metrics for Text Generation. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Anais...2020. Disponível em: <https://doi.org/10.18653/v1/2020.acl-main.704>
SELLARS, W. Inference and Meaning. Mind, v. 62, n. 247, p. 313–338, 1953.
SEMENOV, A. et al. Discerning Depression Propensity Among Participants of Suicide and Depression-Related Groups of Vk.com. Analysis of Images, Social Networks and Texts. Anais...Cham: Springer International Publishing, 2015.
SENA, C. F. L.; CLARO, D. B. InferPortOIE: A Portuguese Open Information Extraction system with inferences. Natural Language Engineering, v. 25, n. 2, p. 287–306, 2019.
SENA, C. F. L.; CLARO, D. B. PragmaticOIE: a pragmatic open information extraction for Portuguese language. Knowl. Inf. Syst., v. 62, n. 9, p. 3811–3836, 2020.
SENA, C. F. L.; GLAUBER, R.; CLARO, D. B. Inference Approach to Enhance a Portuguese Open Information Extraction. Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3: ICEIS. Anais...INSTICC; SciTePress, 2017.
SENNRICH, R.; HADDOW, B.; BIRCH, A. Improving Neural Machine Translation Models with Monolingual Data. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Anais...a2016. Disponível em: <https://arxiv.org/abs/1511.06709>
SENNRICH, R.; HADDOW, B.; BIRCH, A. Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Berlin, Germany: Association for Computational Linguistics, ago. b2016. Disponível em: <https://aclanthology.org/P16-1162>
SENO, E. R. M. RHeSumaRST: um sumarizador automático de estruturas RST. mathesis—[s.l.] Universidade Federal de São Carlos, 2005.
SERBAN, I. et al. Building end-to-end dialogue systems using generative hierarchical neural network models. Proceedings of the AAAI conference on artificial intelligence. Anais...2016. Disponível em: <https://doi.org/10.48550/arXiv.1507.04808>
SERBAN, I. V. et al. A Survey of Available Corpora For Building Data-Driven Dialogue Systems: The Journal Version. Dialogue & Discourse, v. 9, n. 1, p. 1–49, 2018.
SERETAN, V. Syntax-Based Collocation Extraction. 1st. ed. Dordrecht, Netherlands: springer, 2011. v. 44
SERRA, C. R. Realização e percepção de fronteiras prosódicas no português do Brasil: fala espontânea e leitura. tese de doutorado—Rio de Janeiro: Universidade Federal do Rio de Janeiro, 2009.
SHAMMA, S. A. et al. Information Extraction from Arabic Law Documents. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). Anais...2020.
SHANNON, C. E. Prediction and entropy of printed English. Bell System Technical Journal, v. 30, n. 1, p. 50–64, 1951.
SHAOWEI, Z. et al. Survey of Supervised Joint Entity Relation Extraction Methods. Journal of Frontiers of Computer Science & Technology, v. 16, n. 4, 2022.
SHAPIRO, S. C. SNePS: A Logic for Natural Language Understanding and Commonsense Reasoning. Em: Natural Language Processing and Knowledge Representation: Language for Knowledge and Knowledge for Language. Cambridge, MA, USA: MIT Press, 2000. p. 175–195.
SHARDLOW, M. A Survey of Automated Text Simplification. International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Natural Language Processing 2014, v. 4, n. 1, 2014.
SHEIKHALISHAHI, S. et al. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Med Inform, v. 7, n. 2, p. e12239, abr. 2019.
SHEN, G. et al. Depression Detection via Harvesting Social Media: A Multimodal Dictionary Learning Solution. 26th International Joint Conference on Artificial Intelligence, IJCAI-17. Anais...2017.
SHEN, J. et al. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Anais...IEEE, a2018.
SHEN, J. H.; RUDZICZ, F. Detecting Anxiety on Reddit. Fourth Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Anais...Vancouver, Canada: Association for Computational Linguistics, 2017.
SHEN, T. et al. Cross-Domain Depression Detection via Harvesting Social Media. Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. Anais...International Joint Conferences on Artificial Intelligence Organization, b2018.
SHERMIS, M. D.; BURSTEIN, J. Handbook of Automated Essay Evaluation: Current Applications and New Directions. [s.l.] Routledge/Taylor & Francis Group, 2013.
SHI, Z.; LIPANI, A. Don’t Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner., 2023. Disponível em: <https://arxiv.org/abs/2305.01711>
SHICKEL, B. et al. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform, v. 22, n. 5, p. 1589–1604, out. 2017.
SHIMANAKA, H.; KAJIWARA, T.; KOMACHI, M. Machine Translation Evaluation with BERT Regressor. arXiv, v. abs/1907.12679, 2019.
SHIMORINA, A.; BELZ, A. The Human Evaluation Datasheet: A Template for Recording Details of Human Evaluation Experiments in NLP. Proceedings of the 2nd Workshop on Human Evaluation of NLP Systems (HumEval). Anais...Dublin, Ireland: Association for Computational Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.humeval-1.6>
SHMUELI, B. et al. Beyond Fair Pay: Ethical Implications of NLP Crowdsourcing. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...Online: Association for Computational Linguistics, jun. 2021. Disponível em: <https://aclanthology.org/2021.naacl-main.295>
SHRESTHA, A.; SPEZZANO, F. Detecting Depressed Users in Online Forums. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Anais...2019.
SHRIBERG, E. Preliminaries to a theory of speech disfluencies. tese de doutorado—[s.l.] University of California at Berkele, 1994.
SHRIBERG, E. To “errrr” is human: ecology and acoustics of speech disfluencies. Journal of the International Phonetic Association, v. 31, n. 1, p. 153–169, 2001.
SHTERIONOV, D. et al. Human versus Automatic Quality Evaluation of NMT and PBSMT. Machine Translation, v. 32, n. 3, p. 217–235, 2018.
SI, S. et al. Sentence Similarity Computation in Question Answering Robot. Journal of Physics: Conference Series, v. 1237, n. 2, p. 022093, jun. 2019.
SIDDHARTHAN, A. Syntactic Simplifcation and Text Cohesion. Research on Language and Computation - Springer, 2006.
SIDDHI, D.; VERGHESE, J. M.; BHAVIK, D. Survey on various methods of text to speech synthesis. International Journal of Computer Applications, v. 165, n. 6, 2017.
SIDNELL, J. Turn-continuation by self and by other. Discourse Processes, v. 49, n. 3-4, p. 314–337, 2012.
SIDNER, C. A progress report on the discourse and reference components of PAL. [s.l.] Massachusetts Institute of Tech Cambridge Artificial Intelligence LAB, 1978.
SILVA, A. P. DA et al. Risco de queda relacionado a medicamentos em hospitais: abordagem de aprendizado de máquina. Acta Paulista de Enfermagem, v. 36, a2023.
SILVA, E. DA; LATERZA, J.; FALEIROS, T. New State-of-the-Art for Question Answering on Portuguese SQuAD v1.1. Anais do X Symposium on Knowledge Discovery, Mining and Learning. Anais...Porto Alegre, RS, Brasil: SBC, a2022. Disponível em: <https://sol.sbc.org.br/index.php/kdmile/article/view/24974>
SILVA, E.; PARDO, T.; ROMAN, N. Etiquetagem morfossintática multigênero para o português do Brasil segundo o modelo Üniversal Dependencies̈. Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Porto Alegre, RS, Brasil: SBC, b2023. Disponível em: <https://sol.sbc.org.br/index.php/stil/article/view/25438>
SILVA, F. L. V. DA et al. ABSAPT 2022 at IberLEF: Overview of the Task on Aspect-Based Sentiment Analysis in Portuguese. Procesamiento del Lenguaje Natural, v. 69, p. 199–205, b2022.
SILVA, F. R. A. DA. Detecção de Ironia e Sarcasmo em Língua Portuguesa: uma abordagem utilizando Deep Learning. https://github.com/fabio-ricardo/deteccao-ironia, 2018.
SILVA, I. A. L. DA et al. Translation, post-editing and directionality. Translation in transition: Between cognition, computing and technology, p. 107–134, 2017.
SILVA, J. F. DA. Resolução de correferência em múltiplos documentos utilizando aprendizado não supervisionado. Dissertação de Mestrado, Universidade de São Paulo, 2011.
SILVA, J. F. F. Estratégias para sumarização de documentos. mathesis—[s.l.] (Mestrado em Engenharia informática) - Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2022.
SILVA, M. J.; CARVALHO, P.; SARMENTO, L. Building a Sentiment Lexicon for Social Judgement Mining. Proceedings of the 10th International Conference on Computational Processing of the Portuguese Language. Anais...2012.
SILVA, N. F. F. DA et al. Evaluating Topic Models in Portuguese Political Comments About Bills from Brazil’s Chamber of Deputies. (A. Britto, K. Valdivia Delgado, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2021.
SILVA, N. L. DA; DI FELIPPO, A. Descrição e Análise do Fenômeno da Contradição para a Sumarização Automática Multidocumento. [s.l.] Série de Relatórios Técnicos do Núcleo Interinstitucional de Linguística Computacional, 2014.
SILVA, R. M. et al. Towards Automatically Filtering Fake News in Portuguese. Expert Systems with Applications, v. 146, p. 1–48, 2020.
SIMMONS, R.; SLOCUM, J. Generating English Discourse from Semantic Networks. Commun. ACM, v. 15, n. 10, p. 891–905, out. 1972.
SIMÕES, A.; GUINOVART, X. G. Bootstrapping a Portuguese WordNet from Galician, Spanish and English Wordnets. IberSPEECH Conference. Anais...2014. Disponível em: <https://api.semanticscholar.org/CorpusID:10377782>
SINCLAIR, J. (ED.). Collins COBUILD Dictionary of Phrasal Verbs. London, UK: Collins COBUILD, 1989.
SINGH, P. et al. Open Mind Common Sense: Knowledge Acquisition from the General Public. (R. Meersman, Z. Tari, Eds.)On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE. Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
SINGH, Y. B.; GOEL, S. A systematic literature review of speech emotion recognition approaches. Neurocomputing, 2022.
SIQUEIRA, F. et al. Ulysses Tesemõ: a new large corpus for Brazilian legal and governmental domain. Language Resources and Evaluation, p. 1–20, jul. 2024.
SJÖHOLM, J. Probability as readability: A new machine learning approach to readability assessment for written Swedish. [s.l.] LiU Electronic Press, 2012.
SKANTZE, G. Error Handling in Spoken Dialogue Systems: Managing Uncertainty, Grounding and Miscommunication. tese de doutorado—[s.l.] KTH, 2007.
SKANTZE, G. Turn-taking in conversational systems and human-robot interaction: a review. Computer Speech & Language, v. 67, p. 101178, 2021.
SKANTZE, G.; DOĞRUÖZ, A. S. The Open-domain Paradox for Chatbots: Common Ground as the Basis for Human-like Dialogue. Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue. Anais...Prague, Czechia: Association for Computational Linguistics, set. 2023. Disponível em: <https://aclanthology.org/2023.sigdial-1.57>
Slator 2019 Language Industry Market Report. p. 33, 2019.
SLEIMI, A. et al. An automated framework for the extraction of semantic legal metadata from legal texts. Empirical Software Engineering, v. 26, p. 1–50, 2021.
SMADJA, F. A. Retrieving Collocations from Text: Xtract. cl, v. 19, n. 1, p. 143–177, 1993.
SMILEY, C. et al. When to Plummet and When to Soar: Corpus Based Verb Selection for Natural Language Generation. Proceedings of the 9th International Natural Language Generation conference. Anais...: INLG’16.Edinburgh, UK: Association for Computational Linguistics, 2016. Disponível em: <http://anthology.aclweb.org/W16-6606>
SMIRNOVA, A.; CUDRÉ-MAUROUX, P. Relation extraction using distant supervision: A survey. ACM Computing Surveys (CSUR), v. 51, n. 5, p. 1–35, 2018.
SMITH, G.; RUSTAGI, I. Mitigating Bias in Artificial Intelligence: An Equity Fluent Leadership Playbook. [s.l.] Berkeley Haas Center for Equity, Gender; Leadership, 2020.
SMITH, K. S. On Integrating Discourse in Machine Translation. Proceedings of the Third Workshop on Discourse in Machine Translation. Anais...2017.
SMYWIŃSKI-POHL, A. et al. Automatic Extraction of Amendments from Polish Statutory Law. Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law. Anais...: ICAIL ’21.New York, NY, USA: Association for Computing Machinery, 2021.
SNOVER, M. G. et al. A Study of Translation Edit Rate with Targeted Human Annotation. Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, AMTA 2006, Cambridge, Massachusetts, USA, August 8-12, 2006. Anais...2006. Disponível em: <https://aclanthology.org/2006.amta-papers.25/>
SOARES, M. O que é letramento? Presença Pedagógica Volume 2, n. 10, p. 15–25, 1996.
SOCHER, R. et al. Semantic compositionality through recursive matrix-vector spaces. Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Anais...2012.
SODERLAND, S. et al. CRYSTAL inducing a conceptual dictionary. Proceedings of the 14th international joint conference on Artificial intelligence-Volume 2. Anais...1995.
SØGAARD, A. et al. What’s in a p-value in NLP? Proceedings of the Eighteenth Conference on Computational Natural Language Learning. Anais...Ann Arbor, Michigan: Association for Computational Linguistics, jun. 2014. Disponível em: <https://aclanthology.org/W14-1601>
SOLORIO, T. MALINCHE: A NER system for Portuguese that reuses knowledge from Spanish. Reconhecimento de entidades mencionadas em português: Documentação e atas do HAREM, a primeira avaliação conjunta na área, Capı́tulo, v. 10, p. 123–136, 2007.
SONG, H. et al. Feature Attention Network: Interpretable Depression Detection from Social Media. 32nd Pacific Asia Conference on Language, Information and Computation. Anais...Hong Kong: Association for Computational Linguistics, 2018.
SOON, W. M.; NG, H. T.; LIM, C. Y. A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics, v. 27, n. 4, p. 521–544, 2001.
SOUSA, A. et al. Cross-Lingual Annotation Projection for Argument Mining in Portuguese. (G. Marreiros et al., Eds.)Progress in Artificial Intelligence. Anais...Springer International Publishing, 2021.
SOUSA, A. G. DE et al. Using a Domain Ontology to Bridge the Gap between User Intention and Expression in Natural Language Queries. ICEIS (1). Anais...2020.
SOUSA, C. S. C.; ANDRADE, I. M.; ALMEIDA, T. G. DE. A Monopolização de uma conversa informal: Uma descrição dos movimentos de continua ção a partir da linguística sistêmico-funcional. EntreLetras, v. 13, n. 1, p. 158–183, 2022.
SOUSA, M. C. P. DE. O Corpus Tycho Brahe: contribuições para as humanidades digitais no Brasil. Filologia e linguı́stica portuguesa, v. 16, n. esp., p. 53–93, 2014.
SOUSA, R. F. DE; BRUM, H. B.; NUNES, M. DAS G. V. A bunch of helpfulness and sentiment corpora in brazilian portuguese. Proceedings of Symposium in Information and Human Language Technology. Anais...2019.
SOUZA, B. B. DE. A interpretação de lı́nguas de sinais como ação conjunta: uma análise da interação entre o intérprete de turno e o intérprete de apoio. Trabalho de conclusão de curso. Universidade Federal de São Carlos, 2021.
SOUZA, E. et al. An Information Retrieval Pipeline for Legislative Documents from the Brazilian Chamber of Deputies. Em: Legal Knowledge and Information Systems. [s.l.] IOS Press, 2021a. p. 119–126.
SOUZA, E. DE. Construção e avaliação de um treebank padrão ouro. Mestrado—[s.l.] PUC-Rio, 2023.
SOUZA, E. DE; FREITAS, C. Explorando variações no tagset e na anotação Universal Dependencies (UD) para Português: Possibilidades e resultados com base no treebank PetroGold. Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Anais...Association for Computational Linguistics, 2023.
SOUZA, E. N. P. DE; CLARO, D. B.; GLAUBER, R. A Similarity Grammatical Structures Based Method for Improving Open Information Systems. j-jucs, v. 24, n. 1, p. 43–69, 28 jan. 2018.
SOUZA, E. N. P.; CLARO, D. B. Extração de Relações utilizando Features Diferenciadas para Português. Linguamática, v. 6, n. 2, p. 57–65, 2014.
SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. BERTimbau: pretrained BERT models for Brazilian Portuguese. (R. Cerri, R. C. Prati, Eds.)Proceedings of the 2020 Brazilian Conference on Intelligent Systems. Anais...Springer International Publishing, a2020.
SOUZA FREIRE, P. M.; MATIAS DA SILVA, F. R.; GOLDSCHMIDT, R. R. Fake news detection based on explicit and implicit signals of a hybrid crowd: An approach inspired in meta-learning. Expert Systems with Applications, v. 183, p. 115414, 2021.
SOUZA, J. W. DA C. Descrição linguística da complementaridade para a sumarização automática multidocumento. mathesis—[s.l.] Universidade Federal de São Carlos, 2015.
SOUZA, J. W. DA C. Aprofundamento da caracterização linguístico-computacional da complementaridade em um corpus jornalístico multidocumento. tese de doutorado—[s.l.] (Doutorado em Linguística) - Programa de Pós-Graduação em Linguística, Universidade Federal de São Carlos, 2019.
SOUZA, J. W. DA C.; FELIPPO, A. D. Caracterização da complementaridade temporal: subsı́dios para sumarização automática multidocumento. Alfa: Revista de Linguı́stica (São José do Rio Preto), v. 62, p. 125–150, 2018.
SOUZA, J. W. DA C.; FELIPPO, A. D.; PARDO, T. A. S. Investigação da Identificação da Redundância na Sumarização Multidocumento. Anais do III Student Workshop on Information and Human Language Technology. Anais...a2011.
SOUZA, M. et al. Construction of a Portuguese Opinion Lexicon from multiple resources. Proceedings of the 8th Brazilian Symposium in Information and Human Language Technology. Anais...b2011.
SOUZA, V.; NOBRE, J.; BECKER, K. Characterization of Anxiety, Depression, and their Comorbidity from Texts of Social Networks. Anais do XXXV Simpósio Brasileiro de Bancos de Dados. Anais...Porto Alegre, Brazil: SBC, b2020.
SOUZA, V.; NOBRE, J.; BECKER, K. A Deep Learning Ensemble to Classify Anxiety, Depression, and their Comorbidity from Texts of Social Networks. Journal of Information and Data Management, v. 12, n. 3, p. 306–325, b2021.
SPARCK JONES, K. Towards Better NLP System Evaluation. Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994. Anais...1994. Disponível em: <https://aclanthology.org/H94-1018>
SPARCK JONES, K. Natural language processing: a historical review. Em: Current issues in computational linguistics: in honour of Don Walker. [s.l.] Springer, 2001. p. 3–16.
SPARCK JONES, K.; GALLIERS, J. R. Evaluating Natural Language Processing Systems: An Analysis and Review. Lecture Notes in Computer Science, 1995.
SPÄRCK JONES, K. Report on the need for and provision of an ’ideal’ information retrieval test collection. Computer Laboratory, 1975.
SPÄRCK JONES, K.; WALKER, S.; ROBERTSON, S. E. A probabilistic model of information retrieval: development and comparative experiments. Information processing & management, v. 36, n. 6, p. 809–840, 2000.
SPARCK-JONES, K. Automatic Summarizing: Factors and Directions. In Mani, I. And Maybury, M., editors, Advances in Automatic Text Summarization. MIT Press, 1998.
SPEER, R.; CHIN, J.; HAVASI, C. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. CoRR, v. abs/1612.03975, 2016.
SPEICHER, T. et al. Potential for discrimination in online targeted advertising. Proceedings of the Conference on Fairness, Accountability and Transparency. Anais...ACM, 2018.
SPINDOLA, S. et al. Interpretability of Attention Mechanisms in a Portuguese-Based Question Answering System about the Blue Amazon. Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional. Anais...Porto Alegre, RS, Brasil: SBC, 2021. Disponível em: <https://sol.sbc.org.br/index.php/eniac/article/view/18302>
SRIPADA, S.; GAO, F. Summarizing Dive Computer Data: A Case Study in Integrating Textual and Graphical Presentations of Numerical Data. Workshop on Multimodal Output Generation. Anais...: MOG’07.Association for Computational Linguistics, 2007.
SRIPADA, S.; REITER, E.; DAVY, I. SumTime-Mousam: Configurable marine weather forecast generator. Expert Update, v. 6, n. 3, p. 4–10, fev. 2004.
STAB, C. et al. Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective. ArgNLP. Anais...2014.
STANOJEVIC, M.; SIMA’AN, K. BEER: BEtter Evaluation as Ranking. Proceedings of the Ninth Workshop on Statistical Machine Translation, WMT@ACL 2014, June 26-27, 2014, Baltimore, Maryland, USA. Anais...2014. Disponível em: <https://doi.org/10.3115/v1/w14-3354>
STANOVSKY, G. et al. Supervised open information extraction. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Anais...2018.
STEIN, F. O dispositivo para o gerenciamento de sobreposições de vozes na conversa cotidiana em português brasileiro. Salão de Iniciação Cientı́fica (22.: 2010 out. 18-22: Porto Alegre, RS). Livro de resumos. Porto Alegre: UFRGS., 2010.
STEVENS, S. S. A Scale for the Measurement of the Psychological Magnitude Pitch. Acoustical Society of America Journal, v. 8, n. 3, p. 185, jan. 1937.
STIENNON, N. et al. Learning to summarize with human feedback. (H. Larochelle et al., Eds.)Advances in Neural Information Processing Systems. Anais...Curran Associates, Inc., 2020. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf>
STIVERS, T. Sequence Organization. Em: The handbook of conversation analysis. [s.l.] Wiley Online Library, 2013. v. 191.
STJ. Supremo Tribunal de Justiça — Composição. https://www.stj.jus.br/sites/portalp/Institucional/Composicao, maio 24DC.
STRIEN, D. VAN et al. Assessing the impact of OCR quality on downstream NLP tasks. ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence. Anais...2020.
STYMNE, S.; CANCEDDA, N.; AHRENBERG, L. Generation of Compound Words in Statistical Machine Translation into Compounding Languages. Computational Linguistics, p. 1—–42, 2013.
SU, J.; CARDIE, C.; NAKOV, P. Adapting Fake News Detection to the Era of Large Language Models. Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2024. Anais...2024.
SU, K.-Y.; WU, M.-W.; CHANG, J.-S. A new quantitative quality measure for machine translation systems. Proceedings of the 14th conference on Computational linguistics -. Anais...Association for Computational Linguistics, 1992. Disponível em: <http://dx.doi.org/10.3115/992133.992137>
SUCHANEK, F. M.; KASNECI, G.; WEIKUM, G. Yago: a core of semantic knowledge. Proceedings of the 16th international conference on World Wide Web. Anais...2007.
SUN, C.; EMONET, V.; DUMONTIER, M. A Comprehensive Comparison of Automated FAIRness Evaluation Tools. (K. Wolstencroft et al., Eds.)13th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences, SWAT4HCLS 2022, Virtual Event, Leiden, The Netherlands, January 10th to 14th, 2022. Anais...: CEUR Workshop Proceedings.CEUR-WS.org, 2022. Disponível em: <http://ceur-ws.org/Vol-3127/paper-6.pdf>
SUNDAR, A.; HECK, L. Multimodal Conversational AI: A Survey of Datasets and Approaches. Proceedings of the 4th Workshop on NLP for Conversational AI. Anais...Dublin, Ireland: Association for Computational Linguistics, 2022. Disponível em: <https://aclanthology.org/2022.nlp4convai-1.12>
SUNKARA, M. et al. Multimodal Semi-Supervised Learning Framework for Punctuation Prediction in Conversational Speech. Proc. Interspeech 2020. Anais...2020.
SUNKARA, M. et al. Neural Inverse Text Normalization. CoRR, v. abs/2102.06380, 2021.
SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to Sequence Learning with Neural Networks. (Z. Ghahramani et al., Eds.)Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. Anais...2014. Disponível em: <https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html>
TABOADA, M.; MANN, W. C. Rhetorical structure theory: Looking back and moving ahead. Discourse studies, v. 8, n. 3, p. 423–459, 2006.
TACHIBANA, H.; UENOYAMA, K.; AIHARA, S. Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention. arXiv preprint arXiv:1710.08969, 2017.
TAKAMATSU, S.; SATO, I.; NAKAGAWA, H. Reducing wrong labels in distant supervision for relation extraction. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...2012.
TAN, K. L.; LEE, C. P.; LIM, K. M. A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. Applied Sciences, 2023.
TAN, L.; PAL, S. Manawi: Using Multi-Word Expressions and Named Entities to Improve Machine Translation. Proceedings of the 14th Machine Translation Summint. Workshop on Multi-word units in Machine Translation and Translation Technologies. Anais...2014.
TAN, X. et al. A survey on neural speech synthesis. arXiv preprint arXiv:2106.15561, 2021.
TANAKA, E. et al. Cem Mil Podcasts: A Spoken Portuguese Document Corpus. arXiv preprint arXiv:2209.11871, 2022.
TANDOC JR., E. C.; LIM, Z. W.; LING, R. Defining “Fake News”. Digital Journalism, v. 6, n. 2, p. 137–153, 2018.
TANG, Y. et al. Multilingual Translation with Extensible Multilingual Pretraining and Finetuning. CoRR, v. abs/2008.00401, 2020.
TASLIMIPOOR, S.; ROHANIAN, O.; HA, L. A. Cross-lingual Transfer Learning and Multitask Learning for Capturing Multiword Expressions. Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019). Anais...Florence, Italy: Association for Computational Linguistics, ago. 2019. Disponível em: <https://aclanthology.org/W19-5119>
TAUS. TAUS - The Translation Industry in 2022 Report., 2020. Disponível em: <https://info.taus.net/translation-industry-2022-report-download>. Acesso em: 19 ago. 2020
TAYLOR, R. et al. Galactica: A Large Language Model for Science. CoRR, v. abs/2211.09085, 2022.
TAYLOR, W. L. “Cloze procedure”: A new tool for measuring readability. Journalism quarterly, v. 30, n. 4, p. 415–433, 1953.
TAYYAR MADABUSHI, H. et al. AStitchInLanguageModels: Dataset and Methods for the Exploration of Idiomaticity in Pre-Trained Language Models. Findings of the Association for Computational Linguistics: EMNLP 2021. Anais...Punta Cana, Dominican Republic: Association for Computational Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.findings-emnlp.294>
TAYYAR MADABUSHI, H. et al. SemEval-2022 Task 2: Multilingual Idiomaticity Detection and Sentence Embedding. Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022). Anais...Seattle, United States: Association for Computational Linguistics, jul. 2022. Disponível em: <https://aclanthology.org/2022.semeval-1.13>
TEAM, G. et al. Gemma: Open Models Based on Gemini Research and Technology., 2024. Disponível em: <https://arxiv.org/abs/2403.08295>
TEDESCHI, S. et al. What’s the Meaning of Superhuman Performance in Todays NLU? Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...Toronto, Canada: Association for Computational Linguistics, jul. 2023. Disponível em: <https://aclanthology.org/2023.acl-long.697>
TEIXEIRA, A. L. R. et al. DaMata: A robot-journalist covering the Brazilian Amazon deforestation. Proceedings of the 13th International Conference on Natural Language Generation. Anais...2020.
TEIXEIRA, B. H. F. Detecção automática de fronteiras prosódicas na fala espontânea. tese de doutorado—Belo Horizonte: Universidade Federal de Minas Gerais, 2022.
TEIXEIRA, B. H. F.; MITTMAN, M. M. Acoustic Models for the Automatic Identification of Prosodic Boundaries in Spontaneous Speech. Revista de Estudos da Linguagem, v. 26, n. 4, p. 1455–1488, 2018.
TEIXEIRA, B.; BARBOSA, P.; RASO, T. Automatic Detection of Prosodic Boundaries in Brazilian Portuguese Spontaneous Speech. (A. Villavicencio et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2018.
TEIXEIRA, E. N.; FONSECA, M. C. M.; SOARES, M. E. Resolução do pronome nulo em Português Brasileiro: Evidência de movimentação ocular. VEREDAS: Sintaxe das Línguas Brasileiras, v. 18, 2014.
TEIXEIRA, J. P. et al. Phonetic Events from the Labeling the European Portuguese DataBase for Speech Synthesis, FEUP/IPBDB. Seventh European Conference on Speech Communication and Technology. Anais...2001.
TEIXEIRA, J. P.; FREITAS, D.; FUJISAKI, H. Prediction of Fujisaki model’s phrase commands. Eighth European Conference on Speech Communication and Technology. Anais...2003.
TEIXEIRA, S. C. S. B.; MARENGO, S. M. D. A.; FINATTO, M. J. B. Construindo fichas terminológicas para estudos sócio-históricos. Revista Diálogos, v. 10, n. 3, p. 261–279, 2022.
TEIXEIRA, S. H.; ZAMORA, M. H. Pensando a interseccionalidade a partir da vida e morte de Marielle Franco. Dignidade Re-Vista, 2019.
TENNANT, H. R. Evaluation of Natural Language Processors. tese de doutorado—[s.l.] University of Illinois Urbana-Champaign, 1980.
TESCH, L. M. O uso de digressões em textos orais. Filologia e Linguı́stica Portuguesa, v. 17, n. 2, p. 273–293, 2015.
TESNIÈRE, L. Eléments de Syntaxe Structurale. Paris: Klincksieck, 1959.
THAKAR, H.; BHATT, B. Fake News Detection: Recent Trends and Challenges. Social Network Analysis and Mining, v. 14, 2024.
THAKKAR, M.; PISE, N. Survey of Available Datasets for Designing Task Oriented Dialogue Agents. 2019 International Conference on Mechatronics, Remote Sensing, Information Systems and Industrial Information Technologies (ICMRSISIIT). Anais...2019. Disponível em: <https://doi.org/10.1109/ICMRSISIIT46373.2020.9405898>
THEUNE, M. et al. From data to speech: a general approach. Natural Language Engineering, v. 7, n. 1, p. 47–86, 2001.
THOMAS, C. et al. Automatic Detection and Rating of Dementia of Alzheimer Type through Lexical Analysis of Spontaneous Speech. Proceedings of the IEEE International Conference on Mechatronics and Automation, p. 1569–1574, 2005.
THOMAS, R. L.; UMINSKY, D. Reliance on metrics is a fundamental challenge for AI. Patterns, v. 3, n. 5, 2022.
THOPPILAN, R. et al. LaMDA: Language Models for Dialog Applications. CoRR, v. abs/2201.08239, 2022.
THORNE, J.; VLACHOS, A. Automated Fact Checking: Task Formulations, Methods and Future Directions. (E. M. Bender, L. Derczynski, P. Isabelle, Eds.)Proceedings of the 27th International Conference on Computational Linguistics. Anais...Santa Fe, New Mexico, USA: Association for Computational Linguistics, ago. 2018.
TIRRELL, L. Toxic Speech: Inoculations and Antidotes. The Southern Journal of Philosophy, 2018.
TJOA, E.; GUAN, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, v. 32, n. 11, p. 4793–4813, 2021.
TOKUDA, K. et al. Speech parameter generation algorithms for HMM-based speech synthesis. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100). Anais...IEEE, 2000.
TOLLES, J.; MEURER, W. J. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA, v. 316, n. 5, p. 533–534, ago. 2016.
TOMASELLO, M. The usage-based theory of language acquisition. Em: BAVIN, E. L.; NAIGLES, L. R. E. (Eds.). The Cambridge Handbook of Child Language. Cambridge Handbooks em Language e Linguistics. 2. ed. [s.l.] Cambridge University Press, 2015. p. 89–106.
TORAL, A. et al. Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation. Proceedings of WMT. Anais...Brussels, Belgium: 2018.
TORRENT, T. T. et al. Copa 2014 FrameNet Brasil: a frame-based trilingual electronic dictionary for the Football World Cup. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations. Anais...Dublin, Ireland: Dublin City University; Association for Computational Linguistics, ago. 2014. Disponível em: <https://aclanthology.org/C14-2003>
TORRENT, T. T.; ELLSWORTH, M. Behind the Labels: Criteria for Defining Analytical Categories in FrameNet Brasil. Veredas-Revista de Estudos Linguisticos, v. 17, n. 1, p. 44–66, 2013.
TOSCANO, M. E. S. As relações interpessoais e a correção na lı́ngua falada. Cadernos de Linguagem e Sociedade, v. 5, p. 119–119, 2001.
TOUVRON, H. et al. LLaMA: Open and Efficient Foundation Language Models. CoRR, v. abs/2302.13971, 2023.
TRAJANO, D.; BORDINI, R. H.; VIEIRA, R. OLID-BR: offensive language identification dataset for Brazilian Portuguese. Language Resources and Evaluation, 2023.
TRANCOSO, I. et al. Corpus de diálogo CORAL. PROPOR’98, 1998.
TRIFU, R. et al. Linguistic indicators of language in major depressive disorder (MDD). An evidence based research. Journal of Evidence-Based Psychotherapies, v. 17, p. 105–128, mar. 2017.
TROTZEK, M.; KOITKA, S.; FRIEDRICH, C. M. Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. IEEE Transactions on Knowledge and Data Engineering, 2018.
TRUESWELL, J. C.; TANENHAUS, M. K. Approaches to studying world-situated language use: Bridging the language-as-product and language-as-action traditions. [s.l.] MIT Press, 2005.
TSUGAWA, S. et al. Recognizing Depression from Twitter Activity. 33rd Annual ACM Conference on Human Factors in Computing Systems. Anais...New York, USA: Association for Computing Machinery, 2015.
TSVETKOV, Y.; WINTNER, S. Identification of Multi-word Expressions by Combining Multiple Linguistic Information Sources. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Anais...: EMNLP ’11.Stroudsburg, PA, USA: Association for Computational Linguistics, 2011.
TSVETKOV, Y.; WINTNER, S. Extraction of multi-word expressions from small parallel corpora. Natural Language Engineering, v. 18, n. 04, p. 549–573, 2012.
TURCHIOE, M. R. et al. Systematic review of current natural language processing methods and applications in cardiology. Heart, v. 108, n. 12, p. 909–916, 2022.
TURNER, R. et al. Generating Spatio-temporal Descriptions in Pollen Forecasts. Proceedings of the Eleventh Conference of the European Chapter of the Association for Computational Linguistics: Demonstrations. Anais...: EACL’06.Trento, Italy: Association for Computational Linguistics, 2006. Disponível em: <http://dl.acm.org/citation.cfm?id=1608974.1608998>
UCHIDA, H.; ZHU, M.; DELLA SENTA, T. A gift for a millennium. IAS/UNU, Tokyo, 1999.
ULMER, D. et al. Experimental Standards for Deep Learning in Natural Language Processing Research. Findings of the Association for Computational Linguistics: EMNLP 2022. Anais...Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, dez. 2022. Disponível em: <https://aclanthology.org/2022.findings-emnlp.196>
UNESCO. Beijing consensus on artificial intelligence and education. UNESCO Paris, 2019.
UNESCO, D. G. Recomendação sobre a Ética da Inteligência Artificial. Disponível em: < https://unesdoc.unesco.org/ark:/48223/pf0000381137_por >. Acesso em: 28 ago. 2023.
UNICEF. Declaração Universal dos Direitos Humanos. Disponível em: < https://www.unicef.org/brazil/declaracao-universal-dos-direitos-humanos>. Acesso em: 28 ago. 2023.
USZKOREIT, H.; LOMMEL, A. Multidimensional Quality Metrics: A New Unified Paradigm for Human and Machine Translation Quality Assessment. [s.l: s.n.].
UZÊDA, V. R.; PARDO, T. A. S.; NUNES, M. G. V. A comprehensive comparative evaluation of RST-based summarization methods. ACM Transactions on Speech and Language Processing (TSLP), v. 6, n. 4, p. 1–20, 2010.
VAJJALA, S.; MEURERS, D. Readability-based Sentence Ranking for Evaluating Text Simplification. CoRR, v. abs/1603.06009, 2016.
VALLE, R. et al. Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis. arXiv preprint arXiv:2005.05957, 2020.
VAN DEEMTER, K. et al. Toward a computational psycholinguistics of reference production. Topics in cognitive science, v. 4, n. 2, p. 166–183, 2012.
VARGAS, D. F.; VAN DER LANN, R. H. A contribuição da terminologia na construção de linguagens documentárias como os tesauros. Biblos, v. 25, n. 1, p. 21–34, 2011.
VARGAS, F. et al. HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection. Proceedings of the Thirteenth Language Resources and Evaluation Conference. Anais...a2022.
VARGAS, F. et al. Rhetorical Structure Approach for Online Deception Detection: A Survey. (N. Calzolari et al., Eds.)Proceedings of the Thirteenth Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, jun. b2022. Disponível em: <https://aclanthology.org/2022.lrec-1.635>
VARGAS, F. A.; PARDO, T. A. S. Aspect clustering methods for sentiment analysis. Proceedings of International conference on computational processing of the Portuguese language. Anais...Springer, 2018.
VARGAS, F. A.; SANTOS, R. S. S. D.; ROCHA, P. R. Identifying Fine-Grained Opinion and Classifying Polarity on Coronavirus Pandemic. Proceedings of the Brazilian Conference on Intelligent Systems. Anais...2020.
VAROL, O. et al. Online human-bot interactions: Detection, estimation, and characterization. Proceedings of the International AAAI Conference on Web and Social Media. Anais...AAAI Press, 2017.
VASWANI, A. et al. Attention is All you Need. (I. Guyon et al., Eds.)Advances in Neural Information Processing Systems. Anais...Curran Associates, Inc., 2017. Disponível em: <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>
VEAUX, C. et al. CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit. University of Edinburgh. The Centre for Speech Technology Research (CSTR), 2017.
VERHAGEN, M. et al. SemEval-2010 Task 13: TempEval-2. Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval. Anais...2010. Disponível em: <https://www.aclweb.org/anthology/S10-1010.pdf>
VIEIRA, F. E.; FARACO, C. A. Texto e discurso. Escrever na universidade. [s.l.] Parábola, 2019.
VIEIRA, J. M. M. The Brazilian Portuguese eye tracking corpus with a predictability study focusing on lexical and partial prediction. mathesis—Universidade Federal do Ceará, Biblioteca Universitária: Federal University of Ceará (UFC), 2020.
VIEIRA, R. et al. Coreference and anaphoric relations of demonstrative noun phrases in multilingual corpus. Anaphora Processing: linguistic, cognitive and computational modeling, p. 385–403, 2005.
VIEIRA, R. et al. Enriching the 1758 Portuguese Parish Memories (Alentejo) with Named Entities. Journal of Open Humanities Data, v. 7, p. 20, 2021.
VIEIRA, R.; GONÇALVES, P. N.; SOUZA, J. G. C. DE. Processamento computacional de anáfora e correferência. Revista de Estudos da Linguagem, v. 16, n. 1, 2012.
VIETHEN, J.; DALE, R. GRE3D7: A Corpus of Distinguishing Descriptions for Objects in Visual Scenes. UCNLG+Eval: Language Generation and Evaluation Workshop. Anais...Edinburgh, UK: Association for Computational Linguistics, 2011.
VILAIN, M. et al. A model-theoretic coreference scoring scheme. Proceedings of the 6th Message Understanding Conference (MUC-6). Anais...Los Altos, CA, EUA: Morgan Kaufmann, 1995. Disponível em: <http://acl.ldc.upenn.edu/M/M95/M95-1005.pdf>
VILAR, D. et al. Error Analysis of Statistical Machine Translation Output. Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC06). Anais...Genoa, Italy: European Language Resources Association (ELRA), 2006. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2006/pdf/413_pdf.pdf>
VILLAR, G. S.; FINATTO, M. J. B. Acessibilidade textual e terminológica: novos glossários sobre oncologia para a ferramenta MedSimples. Mandinga-Revista de Estudos Linguı́sticos (ISSN: 2526-3455), v. 7, n. 2, p. 23–42, 2023.
VINCIARELLI, A. et al. Open challenges in modelling, analysis and synthesis of human behaviour in human–human and human–machine interactions. Cognitive Computation, v. 7, p. 397–413, 2015.
VINCZE, V.; NAGY T., I.; BEREND, G. Multiword Expressions and Named Entities in the Wiki50 Corpus. Proceedings of the International Conference Recent Advances in Natural Language Processing 2011. Anais...Hissar, Bulgaria: Association for Computational Linguistics, set. 2011. Disponível em: <https://aclanthology.org/R11-1040>
VINCZE, V.; NAGY T., I.; FARKAS, R. Identifying English and Hungarian Light Verb Constructions: A Contrastive Approach. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Anais...Sofia, Bulgaria: Association for Computational Linguistics, ago. 2013. Disponível em: <https://aclanthology.org/P13-2046>
VINYALS, O.; LE, Q. A Neural Conversational Model., 2015. Disponível em: <https://doi.org/10.48550/arXiv.1506.05869>
VITÓRIO, D. et al. Ulysses-RFSQ: A Novel Method to Improve Legal Information Retrieval Based on Relevance Feedback. (J. C. Xavier-Junior, R. A. Rios, Eds.)Intelligent Systems. Anais...Cham: Springer International Publishing, 2022.
VITÓRIO, D. et al. Building a relevance feedback corpus for legal information retrieval in the real-case scenario of the Brazilian Chamber of Deputies. Language Resources and Evaluation, 2024.
VLACHOS, A.; RIEDEL, S. Fact checking: Task definition and dataset construction. Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science. Anais...Association for Computational Linguistics, 2014.
VOGEL, L. H. Um olhar para além do verbo: os usos do olho na fala-em-interação. Universidade Federal do Rio Grande do Sul, 2018.
VOORHEES, E. M.; TICE, D. M. Building a Question Answering Test Collection. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Anais...2000. Disponível em: <https://dl.acm.org/doi/10.1145/345508.345577>
VOSOUGHI, S.; ROY, D.; ARAL, S. The spread of true and false news online. Science, v. 359, n. 6380, p. 1146–1151, 2018.
VRANDEČIĆ, D.; KRÖTZSCH, M. Wikidata: a free collaborative knowledgebase. Communications of the ACM, v. 57, n. 10, p. 78–85, 2014.
WAGNER FILHO, J. A. et al. The brWaC Corpus: A New Open Resource for Brazilian Portuguese. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Anais...Miyazaki, Japan: European Language Resources Association (ELRA), 2018. Disponível em: <https://aclanthology.org/L18-1686>
WAGNER, J. et al. Dawn of the transformer era in speech emotion recognition: closing the valence gap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
WAGNER, P.; MALISZ, Z.; KOPP, S. Gesture and speech in interaction: An overview. Speech CommunicationElsevier, 2014. Disponível em: <https://doi.org/10.1016/j.specom.2013.09.008>
WAGSTAFF, K. L. Machine learning that matters. Proceedings of the 29th International Coference on International Conference on Machine Learning. Anais...2012. Disponível em: <https://doi.org/10.48550/arXiv.1206.4656>
WALKER, M. A. et al. PARADISE: A Framework for Evaluating Spoken Dialogue Agents. 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics. Anais...Madrid, Spain: Association for Computational Linguistics, jul. 1997. Disponível em: <https://aclanthology.org/P97-1035>
WALLIS, S. Completing Parsed Corpora. Em: ABEILLÉ, A. (Ed.). Treebanks: Building and Using Parsed Corpora. Dordrecht: Springer Netherlands, 2003. p. 61–71.
WALTER, E. (ED.). Cambridge Idioms Dictionary. 2. ed. Cambridge, UK: campress, 2006.
WANG, A. et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Anais...Brussels, Belgium: Association for Computational Linguistics, nov. 2018. Disponível em: <https://aclanthology.org/W18-5446/>
WANG, A. et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. Advances in Neural Information Processing Systems, v. 32, p. 3261–3275, 2019.
WANG, B.; KOMATSUZAKI, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax, 2021.
WANG, C. et al. Covost: A diverse multilingual speech-to-text translation corpus. arXiv preprint arXiv:2002.01320, a2020.
WANG, C. et al. Voxpopuli: A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation. arXiv preprint arXiv:2101.00390, a2021.
WANG, C. et al. Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers. arXiv preprint arXiv:2301.02111, a2023.
WANG, C.; WU, A.; PINO, J. Covost 2 and massively multilingual speech-to-text translation. arXiv preprint arXiv:2007.10310, b2020.
WANG, L. et al. Relation classification via multi-level attention cnns. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Anais...2016.
WANG, S. et al. Want To Reduce Labeling Cost? GPT-3 Can Help. (M.-F. Moens et al., Eds.)Findings of the Association for Computational Linguistics: EMNLP 2021. Anais...Punta Cana, Dominican Republic: Association for Computational Linguistics, nov. b2021.
WANG, S. et al. GPT-NER: Named Entity Recognition via Large Language Models., b2023. Disponível em: <https://arxiv.org/abs/2304.10428>
WANG, W. Y. Liar, Liar Pants on Fire: A New Benchmark Dataset for Fake News Detection. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Anais...Vancouver, Canada: Association for Computational Linguistics, jul. 2017.
WANG, W. Y.; GEORGILA, K. Automatic detection of unnatural word-level segments in unit-selection speech synthesis. 2011 IEEE Workshop on Automatic Speech Recognition & Understanding. Anais...IEEE, 2011.
WANG, Y. et al. Tacotron: A fully end-to-end text-to-speech synthesis model. arXiv preprint arXiv:1703.10135, 2017.
WANG, Y. et al. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. (M.-F. Moens et al., Eds.)Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021. Anais...Association for Computational Linguistics, c2021. Disponível em: <https://doi.org/10.18653/v1/2021.emnlp-main.685>
WANG, Y. et al. DSPM-NLG: A Dual Supervised Pre-trained Model for Few-shot Natural Language Generation in Task-oriented Dialogue System. Findings of the Association for Computational Linguistics: ACL 2023. Anais...c2023.
WANI, T. M. et al. A comprehensive review of speech emotion recognition systems. IEEE Access, v. 9, p. 47795–47814, 2021.
WARDLE, C.; DERAKHSHAN, H. Information Disorder: Toward an Interdisciplinary Framework for Research and Policy Making. [s.l.] Council of Europe, 2017. Disponível em: <https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c>.
WASSERMAN, S.; FAUST, K. Social network analysis: Methods and applications. [s.l.] Cambridge university press, 1994.
WATANABE, W. M. et al. Facilita: helping the reading of texts available on the web. XV Brazilian Symposium on Multimedia and the Web, WebMedia ’09, Fortaleza, Ceará, Brazil, October 5-7, 2009. Anais...a2009. Disponível em: <http://doi.acm.org/10.1145/1858477.1858516>
WATANABE, W. M. et al. Facilita: reading assistance for low-literacy readers. Proceedings of the 27th Annual International Conference on Design of Communication, SIGDOC 2009, Bloomington, Indiana, USA, October 5-7, 2009. Anais...b2009. Disponível em: <http://doi.acm.org/10.1145/1621995.1622002>
WATSON, D. The rhetoric and reality of anthropomorphism in artificial intelligence. Minds and Machines, v. 29, n. 3, p. 417–440, 2019.
WAY, A. Quality Expectations of Machine Translation. Em: MOORKENS, J. et al. (Eds.). Translation Quality Assessment: From Principles to Practice. Cham: Springer International Publishing, 2018. p. 159–178.
WAY, A.; FORCADA, M. L. Editors’ foreword to the invited issue on SMT and NMT. Machine Translation, v. 32, n. 3, p. 191–194, set. 2018.
WEI, J. et al. Emergent Abilities of Large Language Models. Trans. Mach. Learn. Res., v. 2022, b2022.
WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS. Anais...a2022. Disponível em: <http://papers.nips.cc/paper\_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html>
WEI, X. et al. ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT., 2024. Disponível em: <https://arxiv.org/abs/2302.10205>
WEN, T.-H. et al. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Anais...: EMNLP’15.Lisbon, Portugal: Association for Computational Linguistics, 2015. Disponível em: <http://aclweb.org/anthology/D15-1199>
WEN, T.-H. et al. Multi-domain Neural Network Language Generation for Spoken Dialogue Systems. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Anais...: HLT-NAACL’16.San Diego, California: Association for Computational Linguistics, 2016. Disponível em: <https://aclanthology.info/pdf/N/N16/N16-1015.pdf>
WERBOS, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE, v. 78, n. 10, p. 1550–1560, 1990.
WHO. Comprehensive mental health action plan 2013–2030. [s.l.] World Health Organization; World Health Organization, 2021.
WIEGREFFE, S.; PINTER, Y. Attention is not not Explanation. (K. Inui et al., Eds.)Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Anais...Hong Kong, China: Association for Computational Linguistics, nov. 2019. Disponível em: <https://aclanthology.org/D19-1002>
WIELING, M.; RAWEE, J.; NOORD, G. VAN. Squib: Reproducibility in Computational Linguistics: Are We Willing to Share? Computational Linguistics, v. 44, n. 4, p. 641–649, dez. 2018.
WIGHTMAN, C. W.; OSTENDORF, M. Automatic recognition of prosodic phrases. [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, v. 1, p. 321–324, 1991.
WILKENS, R. et al. LexSubNC: A Dataset of Lexical Substitution for Nominal Compounds. Proceedings of the 12th International Conference on Computational Semantics (IWCS 2017). Anais...Montpellier, France: 2017.
WILKINSON, M.; DUMONTIER, M.; AALBERSBERG, ET AL. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, v. 3, n. 1, p. 1–9, 2016.
WILKINSON, M.; DUMONTIER, M.; SANSONE, ET AL. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sc. Data, v. 6, n. 1, p. 1–12, 2019.
WILKS, Y. Is Word Sense Disambiguation Just One More NLP Task? Computers and the Humanities, v. 34, n. 1-2, p. 235–243, 2000.
WILLIAMS, I. et al. Contextual speech recognition in end-to-end neural network systems using beam search. 2018. Disponível em: <https://www.isca-speech.org/archive/Interspeech_2018/pdfs/2416.pdf>
WILLIAMS, J. D.; RAUX, A.; HENDERSON, M. The dialog state tracking challenge series: A review. Dialogue & Discourse, v. 7, n. 3, p. 4–33, 2016.
WILLRICH, R.; SANTOS, D. Avaliação no DIP. Linguamática, v. 15, n. 1, p. 69–87, 2023.
WILSON, T. P.; ZIMMERMAN, D. H. The structure of silence between turns in two-party conversation. Discourse processes, v. 9, n. 4, p. 375–390, 1986.
WIVES, L. K. Técnicas de Recuperação de Informações Com Ênfase em Informações Textuais. tese de doutorado—[s.l.] Universidade Federal do Rio Grande do Sul, 1997.
WOLF, T. et al. Transformers: State-of-the-Art Natural Language Processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Anais...Online: Association for Computational Linguistics, out. 2020. Disponível em: <https://www.aclweb.org/anthology/2020.emnlp-demos.6>
WOLINSKI, F.; VICHOT, F.; DILLET, B. Automatic processing proper names in texts. Proc. Conference on European Chapter of the Association for Computational Linguistics. Anais...EACL, 1995.
WU, H. et al. SemEHR: A general-purpose semantic search system to surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research. J Am Med Inform Assoc, v. 25, n. 5, p. 530–537, 2018.
WU, Y. et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.
WU, Y. et al. Memorizing Transformers. The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Anais...OpenReview.net, 2022. Disponível em: <https://openreview.net/forum?id=TrjbxzRcnf->
XAVIER, C. C.; LIMA, V. L. S. DE; SOUZA, M. Open information extraction based on lexical semantics. Journal of the Brazilian Computer Society, v. 21, n. 1, p. 1–14, 2015.
XAVIER, R. C. Português no Direito: Linguagem Forense. Rio de Janeiro: Forense, 2002. p. 1
XIE, S. M. et al. An Explanation of In-context Learning as Implicit Bayesian Inference. The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Anais...OpenReview.net, 2022. Disponível em: <https://openreview.net/forum?id=RdJVFCHjUMI>
XIE, Z.; COHN, T.; LAU, J. H. The Next Chapter: A Study of Large Language Models in Storytelling., 2023. Disponível em: <https://arxiv.org/abs/2301.09790>
XIONG, R. et al. On Layer Normalization in the Transformer Architecture. Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Anais...: Proceedings of Machine Learning Research.PMLR, 2020. Disponível em: <http://proceedings.mlr.press/v119/xiong20b.html>
XU, W.; CALLISON-BURCH, C.; NAPOLES, C. Problems in Current Text Simplification Research: New Data Can Help. Transactions of the Association for Computational Linguistics, v. 3, p. 283–297, 2015.
XU, W.; RUDNICKY, A. Can artificial neural networks learn language models? Proc. 6th International Conference on Spoken Language Processing (ICSLP 2000). Anais...2000.
XU, Y. et al. Hard Sample Aware Prompt-Tuning. (A. Rogers, J. L. Boyd-Graber, N. Okazaki, Eds.)Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023. Anais...Association for Computational Linguistics, 2023. Disponível em: <https://aclanthology.org/2023.acl-long.690>
XUE, L. et al. mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer. (K. Toutanova et al., Eds.)Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021. Anais...Association for Computational Linguistics, 2021. Disponível em: <https://doi.org/10.18653/v1/2021.naacl-main.41>
YADAV, S. et al. Identifying Depressive Symptoms from Tweets: Figurative Language Enabled Multitask Learning Framework. 28th International Conference on Computational Linguistics. Anais...Barcelona, Spain (Online): International Committee on Computational Linguistics, 2020.
YAMAGUCHI, A. et al. Frustratingly Simple Pretraining Alternatives to Masked Language Modeling. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Anais...Online; Punta Cana, Dominican Republic: Association for Computational Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.emnlp-main.249>
YAN, M. Y.; GUSTAD, L. T.; NYTRØ, Ø. Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review. J Am Med Inform Assoc, v. 29, n. 3, p. 559–575, jan. 2022.
YANG, F.; HEEMAN, P. A.; KUN, A. L. An Investigation of Interruptions and Resumptions in Multi-Tasking Dialogues. Computational Linguistics, v. 37, n. 1, p. 75–104, mar. a2011.
YANG, H. et al. Clinical Trial Classification of SNS24 Calls with Neural Networks. Future Internet, v. 14, n. 5, p. 130, 2022.
YANG, J.-H. et al. Enriching Mandarin speech recognition by incorporating a hierarchical prosody model. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Anais...b2011. Disponível em: <https://doi.org/10.1109/ICASSP.2011.5947492>
YANG, K.-C. et al. Scalable and generalizable social bot detection through data selection. Proceedings of the AAAI Conference on Artificial Intelligence, v. 34, n. 01, p. 1096–1103, 2020.
YANG, M. et al. Learning ASR pathways: A sparse multilingual ASR model., 2023. Disponível em: <https://arxiv.org/abs/2209.05735>
YANG, P.; FANG, H.; LIN, J. Anserini: Enabling the use of lucene for information retrieval research. Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. Anais...2017.
YANG, X. et al. An Entity-Mention Model for Coreference Resolution with Inductive Logic Programming. Proceeding of Association for Computational Linguistics. Anais...2008.
YANG, Z. et al. XLNet: Generalized Autoregressive Pretraining for Language Understanding. (H. M. Wallach et al., Eds.)Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Anais...2019. Disponível em: <https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html>
YAO, S. et al. ReAct: Synergizing Reasoning and Acting in Language Models., 2023. Disponível em: <https://arxiv.org/abs/2210.03629>
YATES, A.; COHAN, A.; GOHARIAN, N. Depression and Self-Harm Risk Assessment in Online Forums. Conference on Empirical Methods in Natural Language Processing. Anais...Copenhagen, Denmark: Association for Computational Linguistics, 2017.
YAZDANI, M.; FARAHMAND, M.; HENDERSON, J. Learning Semantic Composition to Detect Non-compositionality of Multiword Expressions. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Anais...Lisbon, Portugal: Association for Computational Linguistics, set. 2015. Disponível em: <https://aclanthology.org/D15-1201>
YAZDAVAR, A. H. et al. Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media. IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. Anais...2017.
YEH, Y.-T.; ESKENAZI, M.; MEHRI, S. A Comprehensive Assessment of Dialog Evaluation Metrics. The First Workshop on Evaluations and Assessments of Neural Conversation Systems. Anais...Online: Association for Computational Linguistics, nov. 2021. Disponível em: <https://aclanthology.org/2021.eancs-1.3>
YI, J.; TAO, J. Self-attention Based Model for Punctuation Prediction Using Word and Speech Embeddings. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 7270–7274, 2019.
YNGVE, V. H. Random generation of English sentences. [s.l.] Massachusetts Inst. of Technology, 1961.
YNGVE, V. H. On getting a word in edgewise. Papers from the sixth regional meeting Chicago Linguistic Society, April 16-18, 1970, Chicago Linguistic Society, Chicago. Anais...1970.
YU, J. et al. Choosing the content of textual summaries of large time-series data sets. Natural Language Engineering, v. 13, n. 1, p. 25–49, 2007.
YU, X.; LAM, W. Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach. Coling 2010: Posters. Anais...2010.
YUAN, W.; NEUBIG, G.; LIU, P. BARTScore: Evaluating Generated Text as Text Generation. Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Anais...a2021. Disponível em: <https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html>
YUAN, Y. et al. A relation-specific attention network for joint entity and relation extraction. International joint conference on artificial intelligence. Anais...International Joint Conference on Artificial Intelligence, b2021.
YUE, Z. et al. Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation. (K. Duh, H. Gomez, S. Bethard, Eds.)Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Anais...Mexico City, Mexico: Association for Computational Linguistics, jun. 2024. Disponível em: <https://aclanthology.org/2024.naacl-long.313>
ZAMPIERI, N.; ILLINA, I.; FOHR, D. Multiword Expression Features for Automatic Hate Speech Detection. (E. Métais et al., Eds.)Natural Language Processing and Information Systems - 26th International Conference on Applications of Natural Language to Information Systems, NLDB 2021, Saarbrücken, Germany, June 23-25, 2021, Proceedings. Anais...: Lecture Notes em Computer Science.Springer, 2021. Disponível em: <https://doi.org/10.1007/978-3-030-80599-9\_14>
ZANINELLO, A.; BIRCH, A. Multiword Expression aware Neural Machine Translation. Proceedings of the 12th Language Resources and Evaluation Conference. Anais...Marseille, France: European Language Resources Association, 2020. Disponível em: <https://aclanthology.org/2020.lrec-1.471>
ZANUZ, L.; RIGO, S. J. Fostering Judiciary Applications with New Fine-Tuned Models for Legal Named Entity Recognition in Portuguese. (V. Pinheiro et al., Eds.)Computational Processing of the Portuguese Language. Anais...Cham: Springer International Publishing, 2022.
ZAROCOSTAS, J. How to fight an infodemic. The lancet, v. 395, n. 10225, p. 676, 2020.
ZE, H.; SENIOR, A.; SCHUSTER, M. Statistical parametric speech synthesis using deep neural networks. 2013 ieee international conference on acoustics, speech and signal processing. Anais...IEEE, 2013.
ZELASKO, P. et al. Punctuation Prediction Model for Conversational Speech. (B. Yegnanarayana, Ed.)Interspeech 2018, 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2-6 September 2018. Anais...ISCA, 2018. Disponível em: <https://doi.org/10.21437/Interspeech.2018-1096>
ZELENINA, M. Eye Tracking for NLP. SlideShare, 2015. Disponível em: <https://www.slideshare.net/mariezelenina/presentation-2-47610828>
ZELENKO, D.; AONE, C.; RICHARDELLA, A. Kernel methods for relation extraction. Journal of machine learning research, v. 3, n. Feb, p. 1083–1106, 2003.
ZEMAN, D. Reusable Tagset Conversion Using Tagset Drivers. Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08). Anais...Marrakech, Morocco: European Language Resources Association (ELRA), 2008. Disponível em: <http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf>
ZEMAN, D.; RESNIK, P. Cross-Language Parser Adaptation between Related Languages. Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages. Anais...2008. Disponível em: <https://aclanthology.org/I08-3008>
ZEN, H. et al. LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech. Proc. Interspeech 2019, p. 1526–1530, 2019.
ZENG, D. et al. Relation classification via convolutional deep neural network. Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers. Anais...2014.
ZEWDU, A.; YITAGESU, B. Part of speech tagging: a systematic review of deep learning and machine learning approaches. Journal of Big Data, v. 9, jan. 2022.
ZHANG, A. et al. Dive into Deep Learning. [s.l.] Cambridge University Press, 2023.
ZHANG, H. The Optimality of Naive Bayes. Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference. Anais...2004.
ZHANG, S. et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
ZHANG, S. X. et al. Predictors of Depression and Anxiety Symptoms in Brazil during COVID-19. Int J Environ Res Public Health, v. 18, n. 13, 30 jun. 2021.
ZHANG, S.; DUH, K.; VAN DURME, B. Mt/ie: Cross-lingual open information extraction with neural sequence-to-sequence models. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Anais...2017.
ZHANG, T. et al. BERTScore: Evaluating Text Generation with BERT. 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Anais...OpenReview.net, 2020. Disponível em: <https://openreview.net/forum?id=SkeHuCVFDr>
ZHAO, J. et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Anais...New Orleans, Louisiana: Association for Computational Linguistics, jun. 2018. Disponível em: <https://aclanthology.org/N18-2003>
ZHAO, S.; GRISHMAN, R. Extracting relations with integrated information using kernel methods. Proceedings of the 43rd annual meeting of the association for computational linguistics (acl’05). Anais...2005.
ZHAO, W. X. et al. A Survey of Large Language Models. CoRR, v. abs/2303.18223, 2023.
ZHONG, H. et al. How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Anais...Association for Computational Linguistics, 2020.
ZHOU, C. et al. LIMA: Less Is More for Alignment. CoRR, v. abs/2305.11206, 2023.
ZHOU, L. et al. A comparison of classification methods for predicting deception in computer-mediated communication. Journal of Management Information Systems, v. 20, n. 4, p. 139–165, 2004.
ZHOU, L. An empirical investigation of deception behavior in instant messaging. IEEE Transactions on Professional Communication, v. 48, n. 2, p. 147–160, 2005.
ZHOU, N. et al. CDGAN-BERT: Adversarial constraint and diversity discriminator for semi-supervised text classification. Knowledge-Based Systems, v. 284, p. 111291, 2024.
ZHU, W.; BHAT, S. GRUEN for evaluating linguistic quality of generated text. arXiv preprint arXiv:2010.02498, 2020.
ZHUANG, F. et al. A comprehensive survey on transfer learning. Proceedings of the IEEE, v. 109, n. 1, p. 43–76, 2020.
ZIEGLER, D. M. et al. Fine-Tuning Language Models from Human Preferences. CoRR, v. abs/1909.08593, 2019.
ZILIO, L.; FINATTO, M. J.; VIEIRA, R. Named Entity Recognition Applied to Portuguese Texts from the XVIII Century. (C. Trojahn et al., Eds.)Proceedings of the Second Workshop on Digital Humanities and Natural Language Processing (2nd DHandNLP 2022) co-located with International Conference on the Computational Processing of Portuguese (PROPOR 2022), Virtual Event, Fortaleza, Brazil, 21st March, 2022. Anais...: CEUR Workshop Proceedings.CEUR-WS.org, 2022. Disponível em: <http://ceur-ws.org/Vol-3128/paper10.pdf>
ZILIO, L.; LAZZARI, R. R.; FINATTO, M. J. B. NLP for historical Portuguese: Analysing 18th-century medical texts. Proceedings of the International Conference on the Computational treatment of Portuguese, PROPOR, 2024.
ZIN, K. K. Hidden Markov model with rule based approach for part of speech tagging of Myanmar language. International Conference on Intelligent Cloud Computing. Anais...2009. Disponível em: <https://api.semanticscholar.org/CorpusID:63473605>
ZOBEL, J. How reliable are the results of large-scale information retrieval experiments? Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval. Anais...ACM, 1998.